Activity-Based Discrete Event Simulation
with OESjs-Core2

How to create and run activity-based Discrete Event ssimulations with
the simulation library OESs-Core2 available from the OES GitHub repo

Gerd Wagner G.Wagner@b-tu.de

Copyright © 2020-2022 Gerd Wagner (CC BY-NC)
Published 2022-10-13
Available asHTML and PDF.

Abstract

Thistutorial article explains how to use the OESjs-Core2 simulation library, which implements an architecture
for Object Event Simulation (OES), extending the OESjs Core 1 simulator by adding support for activities,
which are composite events with some duration. Activities are composed of a start event and an end event.
Resource-constrained activities are modeled by means of Resource Roles (with Resource Cardinality
Constraints) and Resource Pools. They can only be started when their required resources are available. Due to
this dependency, a simulated activity cannot be scheduled like a simulated event. Rather, it hasto be added to a
gueue of planned activities, from which it is dequeued, and scheduled via an immediate activity start event, as
soon as the required resources become available.

https://www.facebook.com/sharer.php?u=https://sim4edu.com/oesjs/core2/tutorial.html
https://twitter.com/intent/tweet?url=https://sim4edu.com/oesjs/core2/tutorial.html&text=Tutorial:%20Discrete%20Event%20Simulation%20with%20OESjs
https://www.linkedin.com/shareArticle?mini=true&url=https://sim4edu.com/oesjs/core2/tutorial.html
mailto:?subject=Tutorial:%20Discrete%20Event%20Simulation%20with%20OESjs-Core2&body=This%20article%20shows%20how%20to%20create%20and%20run%20a%20simulation%20model%20with%20the%20JavaScript-based%20simulation%20framework%20OESjs-Core2%20available%20on%20Sim4edu.com.%20OESjs-Core2%20implements%20the%20Object%20Event%20Simulation%20paradigm%2C%20representing%20a%20general%20Discrete%20Event%20Simulation%20approach%20based%20on%20object-oriented%20modeling%20and%20event%20scheduling.%0A%0Ahttps://sim4edu.com/oesjs/core2/tutorial.html
https://sim4edu.com/oesjs/core2/
https://github.com/gwagner57/oes/blob/master/OESjs-Core2.zip
mailto:G.Wagner@b-tu.de
https://creativecommons.org/licenses/by-nc/4.0/
https://sim4edu.com/oesjs/core2/tutorial.html
https://sim4edu.com/oesjs/core2/tutorial.pdf

Activity-Based Discrete Event Simulation with OESjs-Core2

Table of Contents

LSt OF FIQUIES ...ttt ettt b e b bt e et b et b et b e e b e s e eb e se b e s e eb e s e e bt s e e bt s b e st e b et et et ebeneebe e ii
(RS o 1= o) = OSSOSO iii
1. Introduction to Object Event Modeling of ACHVITIEScccoeviiiie it 1
1.1. Making a Conceptual Model of the System under INVESLIGationccoecererreinennesreee e 1
1.2. Making Simulation DeSIGN MOTELSccceciiiiiiisere ettt s e e eeneene e ens 7

2. Activity-Based Discrete Event Simulation With OESS-COre2ccceveierererierenerene e 14
P20 IS 1 U = (g T o SRS 15
2.2, SIMUIBLTION IMOOELS ...ttt sttt et et e st et ese et e seebeseebeseesesbenenaenens 16
2.3, SIMUIBLION SCENAITOS ...eeueiieuieiereeieetesie st sttt et e e e et ese e e et esesbesbesbesbesbesaessentesee e eneeneeneeseebessesrenseseeseens 20

p S - 11 Lo ST TSTUTTPITRN 34
2.5. SIMUIELTON EXPEITMENES ...ttt ettt b e ea et s b e s b e b e et et se e e e e e e e e e neeneeae e 35

3. Special Issues in ActiVity-Based MOTEIINGcoorririereneereee ettt 39
3.1, WatING TIMEOULSecveiveiteieitestesteeeteseeeeseesessesseste s e saestesteseessestesseseensensensessesessessessessessessessessessensansesenns 39
3.2, AdMISSIDIE RESOUITES ...ttt et ettt ae e a s st s b e b e s bt sb e e b e b sb e e e be e e e ene e e e e ene 39
3.3. Organizational Positions and RESOUICE POOIScccceiiiriiinreree e 40
3.4. Alternate RESOUICE POOISc.oiiieieieieeeeet ettt ettt b et s b e bbbt b e e e s e e neens 41
O =S G 111 (1= 41

G S == Qe 1=1= 101111 TSROSO 42

A. Further EXAMPIE MOELS ..ottt s et et b s bbb sbesaesnen 43
AL MaKe AN DEIIVEN PIZZAocueeeeeeeeeeese st sesae e ettt sae e e naeae e eseesessessessessessessensesenns 43
A.LL Implementation With OESISccoiiiiiiiiieieieiesiesee et e ettt e st sre et sae e e e e e e e esesnesaesnens 50

A2, LOAO-HBUI-DUIMP ..ottt bbbt bbbttt b et b e e 54
A.2.1L Implementation With OESIScciiiiiiiiiiieieiireseseeeee ettt s ae e sae e esae e e e esessessesnens 59

B. SIMUIBIOr ATCHITECTUIEeeiititesie ettt ettt ettt b e bbb e s b e s bt sb e be st e se e s e e e e eneeneenas 65
g0 L SRR i

Activity-Based Discrete Event Simulation with OESjs-Core2

List of Figures

3-1. An OE class design model for the Load-Haul-Dump SySEEM.cccecrirrinninnineesee s 40
A-1. Aninformation design model defining object, event and activity types.ccccvvevievevvrereneeceeeeceeeeeeen 47
A-2. A process design for the Make-and-Deliver-Pizza business ProCessccveeveveeveeieiesiesesiese e e seeen 48
A-3. An enriched process deSIgN MOGE! ..ot b e e bese e se e e eneas 48
A-4. A conceptual OE class model describing object, event and activity types.cccoevvevrennennenneseeee 56
A-5. A refined conceptual ProCesS MOTEL.cciereeieieieeeeerer e e e reereeresne e nes 57
A-6. An information design model for the Load-Haul-Dump SYyStEM.ccccoceeeieieneeiererecee e 58
A-7. A computationally complete process design for the Load-Haul-Dump business process.ccoccveeeenenne 59
A-8. A design model for the Haul Request VENE TUIE. ..o 61
A-9. A design model for the GoToLoadi NgSi t € EVENE TUIE.ceceeeeeeececeee e e eneas 62
A-10. A design model for the Load @VENE FUIE.ccueieieiieieieeee et sresne 62
A-11. A design model for the Haul eVent TUIE. ...t s 63
A-12. A design model for the DUNMP EVENE TUIE.ciieiiiiiee e 63
A-13. A design model for the GoBackToLoadi NgSit @ VNt TUIE.ccecveeeeeeeeeeeece e 63

Activity-Based Discrete Event Simulation with OESjs-Core2

List of Tables

2-1. SIMUIBLION LOQ e.etviuertinertiieteseet sttt sttt sttt b e b b e b s ekt e bt e bt e e s b e s e b e e e b e e e bt e eb e b eb e b ebe st e st neenes 21
2-2. SIMUIBEION LOQ 1viuveeereeieeeieeeeeesestestesteseestesteseessesseseesseseesesseeseesessessessessesasssessessessensensenesnsesensessessensessessens 26
B RS - 11 Lo SO S 35
2-4. EXPEMENE RESUITS ...ttt ettt et b et ae b e b e bt sb e be s eese et e b e ne e e e ne e e eaeebensennenaens 36

Activity-Based Discrete Event Simulation with OESjs-Core2

Chapter 1. Introduction to Object Event Modeling of Activities

This chapter shows how to make activity-based Discrete Event Smulation models using the paradigm of Object
Event Modding and Smulation (OEM& S) with UML Class Diagrams and DPMN Process Diagrams. It is
recommended to first read the tutorial Discrete Event Simulation with OESjs-Corel.

Activities are composite events, having a start event and an end event, and a duration as the time in-between
their start and end events.

For modeling a discrete dynamic system with activities, we have to

1. describe the abject types, event types and activity types of the system (in an information model);

2. describe for any resour ce-constrained activity type, its resource roles and associated resource pools (in
the information model);

3. specify, for any event type, the state changes of affected objects and the follow-up events caused by the
occurrence of an event of that type (in a process model);

4. specify, for any activity type, the state changes of affected objects and follow-up events caused by start
and end events of activities of that type (in the process model).

Section 1.1. Making a Conceptual Model of the System under Investigation

As our first example, we consider a basic model of amedical department of a hospital with just one type of
activity, medical examinations, and one type of resource, doctors. In our second example this model is extended
by adding two other resource types, examination rooms and nurses, and another type of activity: walks to rooms
(the walks of patients to examination rooms guided by nurses).

A basic conceptual model

In our basic model of amedical department we consider just one activity, medical examinations, and one type of
resource, doctors:

* Patients arrive at amedical department at random times.

If there are no other planned examinations waiting for the availability of a doctor, and a doctor is available,
any newly arrived patient isimmediately examined by that doctor. Otherwise, the planned examination of
the newly arrived patient is added to alist of planned examinations (representing a queue).

» The duration of examinations varies, depending on the individual case.

» When an examination by a doctor is completed, the next planned examination is started by the doctor, if
thereis still any planned examination in the queue.

The potentially relevant object types of the system under investigation are:

* patients,
» medical departments,

* doctors.

The potentially relevant event types are:

Chapter 1. Introduction to Object Event Modeling of Activities 1

https://sim4edu.com/oesjs/core1/tutorial.html

Activity-Based Discrete Event Simulation with OESjs-Core2

* patient arrivals,
* examination starts,

» examination ends,

Instead of considering the event types examination starts and examination ends, we can consider the activity
type examinations. Thus, we get the following conceptual information model (expressed as an OE Class
Diagram, which is a specia type of UML class diagram):

«resource role» 1
- |
*
«event type» «activity type» «otgect type»
patient arrivals examinations octors
* 1 1
* * * «resource pool»
«object type»
patients 1 process owner
process owner «object type» 1
medical departments

1 alocate a doctor()

From the diagram we can infer that:

* For patient arrivals and for examinations, there is an association with medical departments providing
the process owner, such that for any patient arrival event and examination activity a specific medical
department isin charge of handling the event or seeing to it that the activity is going to be performed.

» While patient arrivals have two participants: a patient and a medical department, examinations have three
participants: a patient, amedical department and a doctor.

» Examinations have one resource role, doctor, with aresource cardinality constraint of exactly one, which
means that exactly one doctor is required for performing an examination.

» The process owner of an examination, amedical department, has a resource pool for doctors. The
doctors needed for performing examinations at this department are allocated from this pool, and the
department, as the process owner of examinations, has a business procedure for allocating doctors to
planned examinations (using certain policies).

In addition to a conceptual information model, which captures the system'’s state structure, we also need to
make a conceptual process model that captures the dynamics of the system. A process model can be expressed
with the help of event rules, which define what happens when an event (of a certain type) occurs, or, more
specificaly, which state changes and which follow-up events are caused by an event of that type.

The following conceptual process model (in the form of a DPMN Process Diagram) is based on the information
model above. It refersto amedical department as the process owner, visualized in the form of a container
rectangle (called "Pool" in BPMN, but not in DPMN), and to doctor objects, aswell as to the event type patient
arrivals and to the activity type examinations.

Chapter 1. Introduction to Object Event Modeling of Activities 2

Activity-Based Discrete Event Simulation with OESjs-Core2

medical department

medical department
IF doctor available

S THEN allocate doctor IF queue empty

g ELSE queue up a new THEN release doctor
g planned examination

g A A

IS ' .

9O : .

-c 1]

Q

S

doctor allocated gueue not empty
<><\ﬁ *{ examinations W—%

J

patient arrivals +

This conceptual process model describes two causal regularities in the form of the following two event rules,
each stated with two bullet points: one for describing the state changes and one for describing the follow-up
events brought about by applying the rule.

1. When anew patient arrives:

« if adoctor is available, then sheis allocated to the examination of that patient; otherwise, a new
examination task (involving the newly arrived patient) is enqueued;

« if adoctor has been allocated, then the examination of the newly arrived patient is starts.

2. When an examination is completed by a doctor:

* if the queue of planned examinationsis empty, then the doctor is released;

* otherwise, the next planned examination by that doctor startsimmediately.

We can simplify the model by using a Resource-Dependent Activity Scheduling arrow between the patient
arrivals event type circle and the examinations activity type rectangle, as shown in the following DPMN
process diagram:

‘ examinations

patient arrivals

medical
department

An extended conceptual model

For being more realistic, we consider the fact that patients first need to be walked by nurses to the room
allocated to their examination before the examination can start. So, in our extended model of a medical
department we consider two other resource types, examination rooms and nurses, and another type of activity:
walks to rooms (the walks of patients to examination rooms guided by nurses):

Chapter 1. Introduction to Object Event Modeling of Activities

Activity-Based Discrete Event Simulation with OESjs-Core2

 Patientsarrive at amedical department at random times.

» When anew patient arrives, and an examination room and a nurse are available, that nurse walks the
patient to that room, otherwise the patient has to wait for the availability of an examination room and a
nurse (administratively, a new planned walk is added to the queue/list of planned walks).

» When a nurse has walked a patient to aroom and a doctor is available, an examination of the patient by that
doctor in the room starts; otherwise the patient has to wait for the availability of adoctor (administratively,
anew planned examination is placed in the queue/list of planned examinations).

* When an examination of a patient by a doctor in aroom is completed,

1. if thereis still another planned examination of a patient waiting in aroom for the availability
of adoctor, the doctor goes to that room and starts the examination of that patient; otherwise,
the planned examination of the newly arrived patient is added to alist of planned examinations
(representing a queue);

2. if thereis till another planned walk of a patient to aroom waiting for the availability of aroom, the
room is allocated to this planned walk; if anurseis available, she walks the patient to that room.

» The duration of walks and examinations varies, depending on the individual case.

The potentially relevant object types of the system under investigation are: patients, medical departments,
rooms, nurses and doctors.

The potentially relevant event types are patient arrivals and the activity types walks to rooms and examinations.

Thus, we get the following conceptua information model expressed as an OE class diagram:

i . «rp» *
«activity type» «rr» 1
walkstoroom| « dh
* ((rp))
«performer» 1 «object type» «object type»
doctors rooms
«object type» *
nurses 1 «performer» 1 «rr»
1 * «rp» .
1 . fivit
«object type» «activity t)./pe»
: q examinations
patients N
*
1 1 process owner
«object type» 1
«event type» medical departments
patient arrivals 1 planned walks
process owner planned examinations 1
* alocate_a room()
alocate_a nurse()
1 alocate_a doctor()

Chapter 1. Introduction to Object Event Modeling of Activities 4

Activity-Based Discrete Event Simulation with OESjs-Core2

Notice that in this model, (a) the performer roleis explicitly marked with «performer»: anurse is a performer
of walks to room while adoctor is a performer of examinations, and (b) the stereotypes «resource role» and
«resource pool» have been abbreviated by «rr» and «rp».

From the diagram we can infer that:

* For the event type patient arrivals and for the activity types walks to rooms and examinations, there is an
association with medical departments providing the process owner.

» While patient arrivals have two participants: a patient and a medical department, walks and examinations
have four participants: amedical department, a patient, a nurse or adoctor, and aroom.

» Walks have two resource roles, nurse and room, both with a resource cardinality constraint of exactly one,
which means that exactly one nurse and one room are required for performing awalk.

» Examinations have two resource roles, doctor and room, both with a resource cardinality constraint of
exactly one.

» The process owner of awalk to a room and a subsequent examination, a medical department, has three
resource pools for nurses, rooms and doctors. All required resources needed for performing walks to room
and examinations at this department are allocated from these pools, and the department has corresponding
business procedures for allocating rooms, nurses and doctors using certain alocation policies.

In addition to a conceptual information model, which captures the system'’s state structure, we also need to
make a conceptual process model that captures the dynamics of the system. A process model can be expressed
with the help of event rules, which define what happens when an event (of a certain type) occurs, or, more
specifically, which state changes and which follow-up events are caused by an event of that type.

The following conceptua process model (in the form of aDPMN Process Diagram) is based on the information
model above. It refersto the object types medical departments and doctors, as well as to the event type patient
arrivals and to the activity type examinations.

medical department

medical department medical department B
IF waiting line not empt S
AND rgom ava"ablg y IF waiting line not empty
medical department THEN re-allocate nurse to AND nurse available
next patient's walk THEN allocate nurse and re-allocate
IF room and nurse available ELSE release nurse room to next patient
THEN allocate room and nurse IF doctor available ELSE release room
ELSE queue up a new planned THEN allocate doctor IF there is still a planned examination
walk ELSE queue up a new THEN re-allocate doctor
planned examination ELSE release doctor
N A

llocated (—'ﬁ doctor allocated /—'ﬁ
room allocate < —— P
GO—> walks to room | examinations]

W il

patient arrivals t | t

nurse re-allocated doctor re-allocated

ERP

room re-allocated

Chapter 1. Introduction to Object Event Modeling of Activities 5

Activity-Based Discrete Event Simulation with OESjs-Core2

This process model describes three causal regularities in the form of the following three event rules:

1. When anew patient arrives:

« if aroom and anurse are available, they are allocated to the walk of that patient to that room,
otherwise a new planned walk is placed in the corresponding queue;

« if aroom has been alocated, then the nurse starts walking the patient to the room.

2. When awalk of a patient and nurse to aroom is completed:

« if thereis still aplanned walk in the queue and aroom is available, then the room is allocated and
the nurse is re-allocated to the walk of the next patient to that room;
if adoctor isavailable, sheisallocated to the examination of that patient, else a new planned
examination of that patient is queued up;

« if adoctor has been allocated, then the examination of the patient starts;
if the nurse has been re-allocated, she starts walking the next patient to the allocated room.

3. When an examination of a patient is completed by a doctor in a particular room:

« if thereis still aplanned examination (of another patient in another room), the doctor is re-allocated
to that planned examination, else the doctor is released;
if the waiting line is not empty, the room is re-allocated to the next patient, elseit is released;

« if the doctor has been re-allocated to a planned examination, that examination starts;
if the room has been re-allocated to another patient and anurseis available, that nurse starts
walking the patient to the room.

Again, we can simplify the model by using Resource-Dependent Activity Scheduling arrows resulting in an
Activity Network model, as shown in the following DPMN process diagram:

. walks to room examinations

patient arrivals

medical department :
examination

We can display the two performer roles doctor and nurse with the help of two corresponding swimlanes shown
within the process rectangle:

Chapter 1. Introduction to Object Event Modeling of Activities 6

Activity-Based Discrete Event Simulation with OESjs-Core2

[
é 5 patient arrivals
g 2
S E €
o] = T
o B =
3 S (o)
c 38 examinations

Attention

Notice that the use of swimlanes (marking disjoint subrectangles) is a convenient
visual syntax for displaying the performer roles when the different performers have
anon-overlapping set of activity types. However, when activities of a certain type
are performed jointly by more than one performer (e.g., when adoctor and a nurse
jointly perform an examination), a different visual syntax needs to be introduced.

Section 1.2. Making Simulation Design M odels

When making a simulation design based on a conceptual model of the system under investigation, we may
abstract away from certain items of the conceptual model for obtaining a sufficiently simple design. The right
degree of abstraction depends on the purpose of the model.

In our example of amedical department, the purpose of the simulation model isto compute the maximum
gueue length and the resource utilization for al types of activities. So, we may abstract away from the object
type patients since we don't need any information about individual patients. If we don't need utilization
statistics per doctor, but only the average utilization of all doctors, then we may also abstract away from the
object type doctors Thisis the approach chosen in our design models Medical-Department-1a and Medical-
Department-1b, while we keep the object type doctors for modeling individual doctors in the design model
Medical-Department-1c.

Since we abstract away from individual patients, we rename patient arrival events to NewCase events, each of
them representing a new case for an examination to be planned and performed.

The event type NewCase is atype of exogenous events, which are not caused by any causal regularity of the
system under investigation and, therefore, have to be modeled with a recurrence function that allows to compute
the time of the next occurrence of an event of that type.

1.2.1. Design models based on the basic conceptual model
We model the random variations of two variables, the recurrence of new cases and the duration of examinations,

in the form of random variables as special class-level ("static") functions, with a stereotype «rv», in the classto
which they belong, as shown in the diagrams below.

Chapter 1. Introduction to Object Event Modeling of Activities 7

Activity-Based Discrete Event Simulation with OESjs-Core2

The recurrence of NewCase events is modeled as arandom variable with an exponential distribution having
an event rate of 0.7 per minute. The duration of examinations is modeled as arandom variable with a uniform
distribution having lower bound 5 and upper bound 9.

The Medical-Department-1a design model

In the Medical-Department-1ainformation design model, instead of using the built-in generic resource
management logic, we explicitly model the resource management of doctors with the help of a counter variable
for available doctorsin the form of an attribute nmr OfAvailableDoctors, and the operations isDoctor Available(),
allocateDoctor () and releaseDoctor (), in the Medical Department class:

«event type»
NewCase

«rv» recurrence() : Decimal { Exp(0.3)}

«activity type»
Examination

«rv» duration() : Decimal {U(5,10)}

* processOwner «object type»

M edicalDepar tment
nmrOfAvailableDoctors : Integer
plannedExaminations : Queue<Examination>
isDoctorAvailable() : Boolean
allocateDoctor()

1 releaseDoctor()

1
processOwner

The isDoctorAvailable function simply testsif nmrOfAvailableDoctors > 0, while the procedures
allocateDoctor and releaseDoctor decrement and increment the nmr OfAvailableDoctors counter.

In addition to an information design model for defining the simulation's state structure, we also need to make
aprocess design model for defining the dynamics of the simulation. The following DPMN process diagram
defines two event rules:

md: MedicalDepartment
[md = n.medicalDepartment]
isDocAllocated : Boolean

md: MedicalDepartment
[md = e.medicalDepartment]
nextCase: Boolean

TIEIrEn'\(Ii.lsdDo?ltorAvaglable() IF md.plannedExaminations.length = 0
SDocAllocaied = rue THEN md releaseDoctor()
ELSE md.plannedExaminations.enqueue(ELSE md.plannedExaminations.dequeue()

new Examination()) nextCase := true

A B

l [isDocAllocated] [nextCase]
< >

md: MedicalDepartment

e:Examination

sl

n:NewCase

Chapter 1. Introduction to Object Event Modeling of Activities 8

https://sim4edu.com/oesjs/core2/Medical-Department-1a/index.html

Activity-Based Discrete Event Simulation with OESjs-Core2

Notice that this process design model contains the entire resource management logic for (de-)allocating doctors
to (from) examinations. Since standard resource management procedures can be defined in a generic way,
thislogic (and the related code) can be moved from example models to the simulator, as explained in the next

section.

The following table shows the two event rules defined by the above DPMN diagram, expressed in pseudo-code.

ON (event type)

DO (event routine)

NewCase(md) @ t
with md : Medica Department

newExam = new Exam nation(nd);
I F nd. i sDoct or Avai | abl e()

md. al | ocat eDoct or () ;

SCHEDULE new ActivityStart(newExan);
ELSE

md. pl annedExani nati ons. enqueue(newExa

Examination(md) @t
with md : Medica Department

I F md. pl annedExani nati ons.length = 0
md. r el easeDoct or () ;

ELSE
pl annedExam = nd. pl annedExam nati ons. d
SCHEDULE new ActivityStart(plannedExa

2queue();

m

The Medical-Department-1b design model

In the Medical-Department-1b information design model we make two simplifications:

1. We drop the object type Medical Department; since we only need to model one medical department as
the process owner, we can leave it implicit. Thisis ageneral pattern: whenever there is only one process

owner, we can leave it implicit.

2. Since we now use the generic resource management logic that is built into OES Core 2, we do hot
need to model the methods isDoctor Available, allocateDoctor and releaseDoctor. Instead, we define a
resource role doctor (with resource cardinality 1) for the activity type Examination.

The resulting information design model only includes two classes: the event type NewCase and the activity type
Examination, as shown on the left-hand side of the following class diagram.

«event type»
NewCase

«rv» recurrence() : Decimal { Exp(0.3)}

«activity type»
Examination
tasks : Queue<Examination>

«rv» duration() : Decimal {U(5,10)}

resourceRole

OES::Resour ceRole
name{1] : String OES::Resour cePoo|
card[1] : Integer . name: String
rangef0..1] : String =
0
| OES::CountPool
«instance» available : Integer

|
|
|
|
|
|
|
|

isAvailable(in card : Integer) : Boolean
allocate(in card : Integer) K-
release(in card : Integer)

doctor : OES::ResourceRolg

doctors : OES::CountPool

name : String = doctor
card : Integer = 1
range: String

!
\
\
\
«instance» |
\
\
\
\
\

name : String = doctors
available: Integer = 3

Chapter 1. Introduction to Object Event Modeling of Activities

https://sim4edu.com/oesjs/core2/Medical-Department-1b/index.html

Activity-Based Discrete Event Simulation with OESjs-Core2

On the right-hand side bottom of this diagram, the resource role doctor and its count pool doctors, instantiating
the OES Core 2 library classes ResourceRole and CountPool (as a special type of ResourcePool), are shown.
Notice that resourceRole assigns the OES resource role doctor with resource cardinality 1 to the activity type

Exami nation[l], whichisin turn linked to a count pool with name doctors. In OESjs-Core2, thisis coded in the
file Exami nat i on. j s inthefollowing way:

cl ass Exami nation extends aCTIVITY {
constructor({id, startTinme, duration}={}) {
super({id, startTine, duration});
}
static duration() {return rand.uniforn(5, 10);}
}
Exani nati on. resour ceRol es = {
"doctor": {card: 1}

The generic class-level ("static") property Examination.tasks is automatically created by the simulator.
Likewise, the count pool "doctors' is automatically created and assigned to the resource role definition map
entry Examination.resourceRoleg] "doctor"].

In the Medica -Department-1b process design model we make corresponding simplifications as in the
information design model above:

1. Leaving the process owner implicit, we drop the process owner rectangle Medical Department.

2. Since we use the generic resource management logic that is built into OES Core 2 by means of
Resour ce-Dependent Activity Start arrows, we do not need any resource management code involving the
methods isDoctor Available, allocateDoctor and releaseDoctor in event rules. Since the event rules of
the Medical-Department-1a model have only be concerned with resource management, we can discard
them altogether.

In the resulting DPMN diagram, the event type NewCase is connected to the activity type Examination with a
Resource-Dependent Activity Scheduling arrow:

Q H- Examination

NewCase

Using a Resour ce-Dependent Activity Scheduling arrow from NewCase to Examination implies that upon a
NewCase event a new planned Examination activity is enqueued by the simulator, if the required resources
are not available; otherwise, a new Examination activity is scheduled to start immediately. Using this built-in
standard resource management logic relieves the simulation developer from coding the resource availability
tests and the enqueuing of a new Examination activity in a NewCase event rule.

Since in this model, NewCase events and Examination activities are handled according to the generic logic
of Activity Networks built into the OES Core 2 simulator, we do not need to model/specify any event rules.

[1] Such aresource role assignment is expressed in the UML class diagram as alink instantiating the corresponding class-level meta-
property ActivityType.resourceRole.

Chapter 1. Introduction to Object Event Modeling of Activities 10

Activity-Based Discrete Event Simulation with OESjs-Core2

For having NewCase events succeeded by Examination activities, we just need to specify this event flow
relationship (in OESjs-Core?) in the following way:

NewCase. successor Activity = "Exam nation";

The simulator interprets this successor Activity assignment when creating follow-up events for NewCase events
by enqueuing a planned examination activity in the following way

Exami nati on. t asks. enqueue(new Exami nation())

The Medical-Department-1c design model

In the Medical-Department-1c design model, the resource pool doctorsis modeled as an individual resource
pool instead of a count pool. This allows making the model more realistic, for instance, by assigning an
individual work schedule to each doctor defining her availability.

Compared to the Medical-Department-1b information design model, we have to change the following:

1. We need to define an object type Doctor having a resource status attribute with the four possible values
AVAILABLE, BUSY, OUT_OF ORDER or OUT_OF DUTY.

2. While we keep the resourceRole link with the definition of the resource role doctor (with resource
cardinality 1), we replace the count pool linked to it with an individual resource pool.

The resulting information design model is shown in the following class diagram:

«enumeration»
OES::HumanResour ceStatuskL
«object type»Doctor QXQ\I(LABLE OES::Resour cePoo
status : HumanResourceStatusEL OUT_OF ORDER name : String
OUT_OF DUTY 4}
«event type» OES::Individual Pool
NewCase

range : ObjectType
busyResources: List

«rv» recurrence() : Decimal { Exp(0.3)} availResources: List

— isAvailable(in card : Integer) : Boolean

«ectivity type» allocate(in card : Integer)
Examination release(in resObj : Object)
tasks : Queue<Examination> |
«rv» duration() : Decimal {U(5,10)} «instance»
|
resourceRole

|
|
| |doctors : OES::Individual Poo

name : String = doctors
range : ObjectType = Doctor
busyResources : List =[]
availResources: List =]

doctor : OES::ResourceRold

name : String = doctor
card : Integer = 1
range : String = Doctor

On the right-hand side bottom of this diagram, the resource role doctor and itsindividual pool doctors,
instantiating the OES Core 2 library classes ResourceRole and Individual Pool (as a special type of
ResourcePoal), are shown. In OESjs-Core2, thisis coded in the file Exani nat i on. j s in the following way:

Chapter 1. Introduction to Object Event Modeling of Activities 11

https://sim4edu.com/oesjs/core2/Medical-Department-1c/index.html

Activity-Based Discrete Event Simulation with OESjs-Core2

Exani nati on. resour ceRol es = {

"doctor":

{range:

Doctor, card: 1}

The Medical-Department-1c process design model is the same as in the Medical-Department-1b process design

model above:

Examination

O

NewCase

1.2.2. A design model based on the extended conceptual model

In the Medical-Department-2a design model, we model two activity types. WalkToRoom activitiesinvolve a

room and are performed by a nurse, while Examination activities involve aroom and are performed by adoctor.
The resource pools nurses and doctors are modeled as individua resource pools, while the resource pool rooms,
which is used by both WalkToRoom and Examination activities, is modeled as a count pool.

The resulting information design model is shown in the following class diagram:

«event type»
NewCase

resourceRole

nurse : OES::ResourceRol§

«rv» recurrence() : Decimal { Exp(0.3)]

«object type»
Nurse

status : HumanResourceStatusEL

«activity type»
WalkToRoom

tasks : Queue<WalkToRoom>

name : String = nurse
card: Integer =1
range : String = Nurse

resourceRole

nurses : OES::Individual Poo

name : String = nurses
range : ObjectType = Nurse
busyResources : List =[]
availResources: List =]

room : OES::ResourceRolq

«object type»
Doctor

«rv» duration() : Decimal {U(0.5,2.5)

status : HumanResourceStatusEL

«activity type»Examination
tasks : Queue<Examination>

«enumeration»

AVAILABLE
BUSY

OUT_OF ORDER
OUT_OF DUTY

OES::HumanResour ceStatusgL

name : String = room
card: Integer =1
range : String

«rv» duration() : Decimal {U(5,10)
resourceRole

room : OES::ResourceRolq

name : String = room
card : Integer = 1

resourceRole

range : String

rooms : OES::CountPool

name : String = rooms

available: Integer = 3

doctor : OES::ResourceRold

name : String = doctor
card : Integer =1

range : String = Doctor

doctors : OES::Individual Poo|

name : String = doctors
range : ObjectType = Doctor
busyResources : List =[]
availResources: List =]

Notice that the generic class-level ("static") properties WalkToRoom.tasks and Examination.tasks don't have to
be defined when coding the two activity types since they are automatically created by the simulator.

In the process design model, again, we leave the process owner implicit, not showing a container rectangle for

Medical Department:

Chapter 1. Introduction to Object Event Modeling of Activities

12

https://sim4edu.com/oesjs/core2/Medical-Department-2a/index.html

Activity-Based Discrete Event Simulation with OESjs-Core2

However, it is an option to show the performer roles with the help of corresponding Lanes:

NewCase

% WalkToRoom
c

NewCase
S
3 Examination
©

In OESjs-Core2, the two Resour ce-Dependent Activity Scheduling arrows between NewCase and WalkToRoom,
aswell as between WalkToRoom and Examination are coded as

NewCase. successor Activity = "Wl kToRoont';
inthefile NewCase. j s, and as
Wal kToRoom successorActivity = "Exam nation";

in\Wal kToRoom j s.

Chapter 1. Introduction to Object Event Modeling of Activities 13

Activity-Based Discrete Event Simulation with OESjs-Core2

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Cor e2

The JavaScript-based simulation framework OESs-Core2 implements the Object Event Smulation (OES)
paradigm, allowing activity-based Discrete Event Smulation based on object-oriented modeling and event
scheduling. Y ou can download OESjs-Core2 in the form of a ZIP archive file from the OES GitHub repo. After
extracting the archive on your local disk, you can run any of its example models or create your own model (e.g.,
by making a copy of one of the example model folders and using its code files a s starting point).

The code of an OESjs-Core2 simulation consists of (1) the OESjs-Core2 library filesin the folder CES] s-
Cor e2, (2) generd library filesinthel i b folder and (3) the following files to be created by the simulation
developer:

1. For each object type Obj T, aJScodefile Obj T. j s.
2. For each event type EVIT, aJScodefileEvt T.j s.
3. For each activity type ActT, aJScodefileAct T. | s.

4. Asimul ation. js filedefining further parts of the smulation, such as statistics variables and the
initial state.

OESjs-Core2 supports three forms of simulations:

1. Standalone scenario simulations, which are good for getting a quick impression of a simulation model,
e.g., by checking some simple statistics.

2. Simple simulation experiments, which are defined as a set of replicated simulation scenario runs,
providing summary statistics like mean, standard deviation, minimum/maximum and confidence
intervals for each statistics variable defined in the underlying model.

3. Parameter variation experiments, for which a set of experiment parameters with value sets are defined
such that each experiment parameter corresponds to a model parameter. When an experiment is run,
each experiment parameter value combination defines an experiment scenario, which is run repeatedly,
according to the specified number or replications for collecting statistics.

OESjs-Core2 alows defining two or more simulation scenarios for a given model. While an experiment typeis
defined for a given model, an experiment of that type is run on top of a specific scenario.

Using asimulation library like OESjs-Core2 means that only the model-specific logic has to be coded (in the
form of object types, event types, event routines and other functions for model-specific computations), but not
the general simulator operations (e.g., time progression and statistics) and the environment handling (e.g., user
interfaces for statistics output).

The following sections present the basic concepts of the OESjs-Core2 simulation library, and show how to
implement the models described in Chapter 1.

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 14

https://sim4edu.com/OES
https://github.com/gwagner57/oes/blob/master/OESjs-Core2.zip

Activity-Based Discrete Event Simulation with OESjs-Core2

Attention

Y ou can download the simul ation exampl e folders from the OES repo to your
computer, and then possibly modify their files for creating your own simulations.
Since an OESjs simulation includes a JS worker file for running the simulator in its
own thread separately from the main (user interface) thread, it cannot be run from
the local file system without changing the browser's default configuration (due to
the web security policy CORS).

For devel oping OESjs simulations on your computer, you should use Firefox
because its security settings can be easily configured such that it allows
loading JS worker files directly from the local file system by disabling the flag
"strict_origin_policy" specifically for file URLs:

1. Enter "about:config" in the Firefox search bar.
2. Search for "security.fileuri.strict_origin_policy".
3. Disablethis policy by changing its value from trueto false.

This creates only a small security risk because the important web security policy
caled "CORS' isonly disabled for file URLSs, but not for normal URLSs.

For other browsers, like Chrome, you need to install alocal HTTP server and

load your simulation's index.html file from that local server, or run it viathe JS
development tool WebStorm (which has a built-in local server), because the only
option for loading JS worker files from the local file system in Chrome would be
to disable the CORS policy completely (see how to disable CORS in Chrome), but
that would create a severe security risk and is therefore not recommended.

Section 2.1. Simulation Time

A simulation model has an underlying time model, which can be either discrete time, when setting

simnodel .time = "di screte";

or continuous time, when setting

simnodel .tinme = "continuous";

Choosing a discrete time model means that time is measured in steps (with equal durations), and all temporal
random variables used in the model need to be discrete (i.e., based on discrete probability distributions).
Choosing a continuous time model means that one has to define a simulation time granularity, as explained in
the next sub-section.

In both cases, the underlying simulation time unit can be either left unspecified (e.g., in the case of an abstract
time model), or it can be set to one of the time units"ms", "s", "min", "hour", "day", "week", "month" or "year
asin

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2

15

https://www.freecodecamp.org/news/cors-csp-web-security-concepts-for-developers/
https://windowsreport.com/browser-not-support-cross-origin/

Activity-Based Discrete Event Simulation with OESjs-Core2

simnodel .timeUnit = "hour";

Typical examples of time models are:

1. An abstract discrete model of time where time runs in steps without any concrete meaning:

simnodel .time = "di screte";

2. A concrete discrete model of timein number of days:

simnodel .tinme = "discrete";
simnodel .timeUnit = "day";

3. A concrete continuous model of time in number of seconds:

simnodel .time = "conti nuous";
simnodel .timeUnit = "s";

2.1.1. Time Granularity

A model'stime granularity is the time delay until the next moment, such that the model does not allow
considering an earlier next moment. Thisis captured by the simulation parameter nextMomentDeltaT used
by the ssimulator for scheduling immediate events with aminimal delay. When a simulation model is based
on discrete time, nextMomentDeltaT is set to 1, referring to the next time point. When a simulation model is
based on continuous time, nextMomentDeltaT is set to the default value 0.001, unless the model parameter
si m nodel . next Moment Del t aT isexplicitly assigned inthe si mul ati on. j s file.

2.1.2. Time Progression

An important issue in simulation is the question how the simulation time is advanced by the simulator. The
OES paradigm supports next-event time progression and fixed-increment time progression, as well astheir
combination.

An OESjs-Corel model with fixed-increment time progression has to define a suitable periodic time event type,
like EachSecond or EachDay in the form of an exogenous event type with arecurrence function returning the

value 1. Such amodel can be used for

1. modeling continuous state changes (e.g., objects moving in a continuous space), or

2. making a discrete model that abstracts away from explicit events and uses only implicit periodic time
events ("ticks"), which is apopular approach in social science simulation.

Examples of discrete event simulation models with fixed-increment time progression and no explicit events are
the Schelling Segregation Model and the Susceptible-Infected-Recovered (SIR) Disease Model.

Section 2.2. Simulation M odels

2.2.1. An Activity Typewith a Class-L evel Resour ce Role and a Count Pool

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 16

https://sim4edu.com/sims/6
https://sim4edu.com/sims/25/index.html

Activity-Based Discrete Event Simulation with OESjs-Core2

Based on the conceptual model of Section 1.1, we choose the design discussed in Section 1.2 in the subsection
"The Medical-Department-1b design model” and defined by the following information design model:

«event type»
NewCase

«rv» recurrence() : Decimal { Exp(0.3)}

«activity type»
Examination

tasks : Queue<Examination>

«rv» duration() : Decimal {U(5,10)}

resourceRole

OES::Resour ceRoal

117

OES::Resour cePoo

name[1] : String
card[1] : Integer
range[0..1] : String

0
|

|
«instance»

name: String

S

OES::CountPool

available : Integer

isAvailable(in card : Integer) : Boolean

alocate(in card : Integer)
release(in card : Integer)

<_

doctor : OES::ResourceRol€

Notice that this model

name : String = doctor
card : Integer =1
range : String

«instance»

doctors : OES::CountPool

name : String = doctors
available: Integer = 3

1. Does not define an object type Doctor, since the doctors of the department are not modeled as a
collection of individual persons, but as an abstract aggregate in the form of a count pool.

2. Does not link the resource role doctor to the count pool doctors because linking a resource pool to
an activity type for any of its resource roles has to be done by a process model, either implicitly or
explicitly. By default, if thereis aresource pool with the same (but pluralized) name as aresourcerole, it
isimplicitly assigned to that resource role. In general, an information design model may be the basis for
many process models, and each of them may assign a different resource pool to the same resource role of

an activity type.

The random variable recurrence for modeling the random variation of the time between new cases samples from
the exponential probability distribution with an event rate of 0.3, while the random variable for the duration
of an examination samples from the uniform probability distribution with lower bound 5 and upper bound 10

(representing minutes).

The NewCase class can be coded with OESjs-Core2 in the following way:

cl ass NewCase extends eVENT {
constructor({ occTinme, delay}) {

super ({occTi me, del ay});

}

onEvent () {return [];}
creat eNext Event () {

return new NewCase({del ay: NewCase.recurrence()});

}

static recurrence() {return rand. exponential (0.3);}

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2

17

Activity-Based Discrete Event Simulation with OESjs-Core2

The onEvent method is empty since no event rules are needed for this simple model. Its dynamicsis entirely
determined by the standard logic of resource-dependent activity scheduling built into OES Core 2.

The Examination class can be coded in the following way:

cl ass Exami nation extends aCTIVITY {
constructor({id, startTime, duration}={}) {
super ({id, startTine, duration});
}
static duration() {return rand.uniforn(5, 10);}
}
Examni nati on. resour ceRol es = {
"doctor": {countPool Nane: "doctors", card: 1}

The process resulting from NewCase events followed by Examination activities is modeled with a Resource-
Dependent Activity Scheduling arrow:

@ HH- Examination

NewCase

In OESjs-Core2, this simple process model is coded with one line of codein the file NewCase. j s:
NewCase. successor Activity = "Exam nation";

2.2.2. Modeling a Sequence of Two Activity Types

The following information design model of amedical department with two types of activities (discussedin) is
based on the conceptual information model discussed in :

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 18

Activity-Based Discrete Event Simulation with OESjs-Core2

«event type» resourceRole
NewCase nurse : OES::ResourceRolg
name : String = nurse
«rv» recurrence() : Decimal { Exp(0.3)] card : Integer = 1
range: String = Nurse
«object type» «activity type»
Nurse WalkToRoom

resourceRole

status : HumanResourceStatusEL

nurses : OES::Individual Poo

name : String = nurses
range : ObjectType = Nurse
busyResources : List =[]
availResources: List =]

tasks : Queue<WakToRoom>

room : OES::ResourceRol 6

«rv» duration() : Decimal {U(0.5,2.5)

«object type»
Doctor

status : HumanResourceStatusEL

«activity type»Examination

name : String = room
card : Integer = 1
range : String

tasks : Queue<Examination>

rooms : OES::CountPool

name : String = rooms

available : Integer =3

«enumeration» «rv» duration() : Decimal { U(5,10 : -
OES:HumanResour ceStatusiL 0 {U(5,10) room : OES..RewurceRoIe
AVAILABLE resourceRole (r:l:rmdg .| nStteng ré? f ;oom
BUSY) o~
OUT_OF ORDER range : String
OUT_OF_DbUTY doctor : OES::ResourceRolg

resourceRole name : String = doctor
card : Integer = 1

range : String = Doctor

doctors : OES::Individual Poo

name : String = doctors
range : ObjectType = Doctor
busyResources : List =[]
availResources: List =]

The class implementing the event type NewCase is defined as above. The class implementing the activity type

WalkToRoom is defined as follows:

cl ass Wal kToRoom ext ends aCTIVITY {
constructor ({id, startTinme, duration}={}) {
super({id, startTine, duration});

}
static duration() {return rand.uniforn(0.5, 2.5);}

}
/1 Awalk to a roomrequires a roomand a nurse
Wal kToRoom r esour ceRol es = {

"nurse": {range: Nurse, card: 1},

"room': {countPool Nare: "roons", card: 1}

The class implementing the activity type Examination is defined as follows:

cl ass Exami nation extends aCTlIVITY {
constructor({id, startTime, duration}={}) {
super ({id, startTinme, duration});

}

static duration() {return rand.uniform(5, 10);}
}
/1 An examination requires a roomand a doctor
Exami nati on. resourceRol es = {

"doctor": {range: Doctor, card:1},

"roont: {countPool Nare: "roons", card: 1}

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2

19

Activity-Based Discrete Event Simulation with OESjs-Core2

The following process design model (discussed in) is based on the conceptual process model discussedin :

g WalkToRoom
c

NewCase
g @
o] Examination
©

This process design model with its two Resource-Dependent Activity Scheduling arrows is implemented with
just two statements on top of the classes NewCase and WalkToRoom:

/'l Enqueue a new pl anned wal k

NewCase. successorActivity = "Wal kToRoont';

/1 Enqueue a new pl anned exam nati on

Wal kToRoom successorActivity = "Exam nation”;

Y ou can run this Medical-Department-2a model from the project's GitHub website.
Activitieswith Default Durations

When an activity type is defined without defining a class-level duration function, the exponential PDF is used

as a built-in default random variable for setting the durations of activities of that type according to the following

Settings:

aCTl VI TY. def aul t Mean = 1;
aCTI VI TY. defaul t Duration = function () {
return rand. exponential (1/ aCTI VI TY. def aul t Mean)

%

It is possible to overwrite these defaults, both the defaultMean and the defaultDuration function, in a
simul ation.j s file

Section 2.3. Simulation Scenarios

For obtaining a complete executable simulation scenario, a simulation model has to be complemented with
simulation parameter settings and an initial system state.

In general, we may have more than one simulation scenario for a simulation model. For instance, the same
model could be used in two different scenarios with different initial states.

2.3.1. A Simulation Scenario for M edical-Department-1b

The default ssimulation scenario for the Medical-Department-1b model defines a duration of 2000 min per
simulation run and an initial state with a count resource pool with 3 doctors:

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2

20

https://sim4edu.com/oesjs/core2/Medical-Department-2a/index.html

Activity-Based Discrete Event Simulation with OESjs-Core2

sim scenari o. durationl nSi nTi ne 1000;

sim scenario.setuplnitial State = function () {
/1 Initialize the count pool "doctors"
si m resour cePool s["doctors"].avail able = 3;
/1 Schedule initial events
si m FEL. add(new NewCase({occTime: 1}));

Y ou can run this Medical-Department-1b scenario from the project's GitHub website. An example of arun of
this scenario is shown in the following simulation log:

Table 2-1. Smulation Log

Step Time System State Future Events
) ExaminationStart@1.01,
1 1 av. doctors: 2 NewCase@3.33
2 1.01 av. doctors; 2 NewCase@3.33,

ExaminationEnd@8.72

ExaminationStart@3.34,
3 3.33 av. doctors; 1 NewCase@4.59,
ExaminationEnd@8.72

NewCase@4.59,
4 3.34 av. doctors: 1 ExaminationEnd@8.72,
ExaminationEnd@12.51

ExaminationStart@4.6,
NewCase@6.93,
ExaminationEnd@8.72,
ExaminationEnd@12.51

5 4,59 av. doctors; O

NewCase@6.93,
ExaminationEnd@8.72,
ExaminationEnd@12.51,
ExaminationEnd@13.71

6 4.6 av. doctors: O

ExaminationEnd@8.72,
NewCase@8.79,
ExaminationEnd@12.51,
ExaminationEnd@13.71

7 6.93 av. doctors; O

ExaminationStart@8.73,
NewCase@8.79,

ExaminationEnd@12.51,
ExaminationEnd@13.71

8 8.72 av. doctors; O

NewCase@8.79,

ExaminationEnd@12.51,
ExaminationEnd@13.71,
ExaminationEnd@16.58

9 8.73 av. doctors: 0

NewCase@9.56,

10 8.79 av. doctors: 0 ExaminationEnd@12.51,

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 21

https://sim4edu.com/oesjs/core2/Medical-Department-1b/index.html

Activity-Based Discrete Event Simulation with OESjs-Core2

Step

Time

System State

Future Events

ExaminationEnd@13.71,
ExaminationEnd@16.58

11

9.56

av. doctors; O

ExaminationEnd@12.51,
ExaminationEnd@13.71,
ExaminationEnd@16.58,
NewCase@17.88

12

1251

av. doctors: O

ExaminationStart@12.52,
ExaminationEnd@13.71,
ExaminationEnd@16.58,
NewCase@17.88

13

12.52

av. doctors; O

ExaminationEnd@13.71,
ExaminationEnd@16.58,
NewCase@17.88,

ExaminationEnd@19.95

14

13.71

av. doctors; O

ExaminationStart@13.72,
ExaminationEnd@16.58,
NewCase@17.88,
ExaminationEnd@19.95

15

13.72

av. doctors: 0

ExaminationEnd@16.58,
NewCase@17.88,

ExaminationEnd@19.95,
ExaminationEnd@22.08

16

16.58

av. doctors; 1

NewCase@17.88,
ExaminationEnd@19.95,
ExaminationEnd@22.08

17

17.88

av. doctors: O

ExaminationStart@17.89,
NewCase@18.06,
ExaminationEnd@19.95,
ExaminationEnd@22.08

18

17.89

av. doctors; O

NewCase@18.06,

ExaminationEnd@19.95,
ExaminationEnd@22.08,
ExaminationEnd@23.95

19

18.06

av. doctors; O

ExaminationEnd@19.95,
ExaminationEnd@22.08,
ExaminationEnd@23.95,
NewCase@24.76

20

19.95

av. doctors: 0

ExaminationStart@19.96,
ExaminationEnd@22.08,
ExaminationEnd@23.95,
NewCase@24.76

21

19.96

av. doctors; O

ExaminationEnd@22.08,
ExaminationEnd@23.95,

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 22

Activity-Based Discrete Event Simulation with OESjs-Core2

Step

Time

System State

Future Events

NewCase@24.76,
ExaminationEnd@27.37

22

22.08

av. doctors: 1

ExaminationEnd@23.95,
NewCase@24.76,
ExaminationEnd@27.37

23

23.95

av. doctors: 2

NewCase@24.76,
ExaminationEnd@27.37

24

24.76

av. doctors; 1

ExaminationStart@24.77,
ExaminationEnd@27.37,
NewCase@27.97

25

24.77

av. doctors; 1

ExaminationEnd@27.37,
NewCase@27.97,
ExaminationEnd@32.74

26

27.37

av. doctors; 2

NewCase@27.97,
ExaminationEnd@32.74

27

27.97

av. doctors; 1

ExaminationStart@27.98,
NewCase@32.5,
ExaminationEnd@32.74

28

27.98

av. doctors; 1

NewCase@32.5,
ExaminationEnd@32.74,
ExaminationEnd@36.51

29

325

av. doctors: 0

ExaminationStart@32.51,
NewCase@32.73,
ExaminationEnd@32.74,
ExaminationEnd@36.51

30

3251

av. doctors; O

NewCase@32.73,

ExaminationEnd@32.74,
ExaminationEnd@36.51,
ExaminationEnd@37.93

31

32.73

av. doctors; O

ExaminationEnd@32.74,
NewCase@34.02,

ExaminationEnd@36.51,
ExaminationEnd@37.93

32

32.74

av. doctors: O

ExaminationStart@32.75,
NewCase@34.02,
ExaminationEnd@36.51,
ExaminationEnd@37.93

33

32.75

av. doctors. O

NewCase@34.02,

ExaminationEnd@36.51,
ExaminationEnd@37.93,
ExaminationEnd@39.84

34.02

av. doctors: O

ExaminationEnd@36.51,
ExaminationEnd@37.93,

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 23

Activity-Based Discrete Event Simulation with OESjs-Core2

Step

Time

System State

Future Events

ExaminationEnd@39.84,
NewCase@40.99

35

36.51

av. doctors; O

ExaminationStart@36.52,
ExaminationEnd@37.93,
ExaminationEnd@39.84,
NewCase@40.99

36

36.52

av. doctors: O

ExaminationEnd@37.93,
ExaminationEnd@39.84,
NewCase@40.99,

ExaminationEnd@44.03

37

37.93

av. doctors; 1

ExaminationEnd@39.84,
NewCase@40.99,
ExaminationEnd@44.03

38

39.84

av. doctors; 2

NewCase@40.99,
ExaminationEnd@44.03

39

40.99

av. doctors; 1

ExaminationStart@41,
ExaminationEnd@44.03,
NewCase@59.51

40

41

av. doctors; 1

ExaminationEnd@44.03,
ExaminationEnd@47.52,
NewCase@59.51

41

44.03

av. doctors; 2

ExaminationEnd@47.52,
NewCase@59.51

42

47.52

av. doctors; 3

NewCase@59.51

43

59.51

av. doctors; 2

ExaminationStart@59.52,
NewCase@66.71

59.52

av. doctors; 2

ExaminationEnd@64.6,
NewCase@66.71

45

64.6

av. doctors; 3

NewCase@66.71

46

66.71

av. doctors; 2

ExaminationStart@66.72,
NewCase@78.2

47

66.72

av. doctors; 2

ExaminationEnd@74.77,
NewCase@78.2

48

1477

av. doctors; 3

NewCase@78.2

49

78.2

av. doctors; 2

ExaminationStart@78.21,
NewCase@80.27

50

78.21

av. doctors; 2

NewCase@80.27,
ExaminationEnd@83.75

51

80.27

av. doctors: 1

ExaminationStart@80.28,
NewCase@80.53,
ExaminationEnd@83.75

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 24

Activity-Based Discrete Event Simulation with OESjs-Core2

Step Time System State Future Events
NewCase@80.53,
52 80.28 av. doctors; 1 ExaminationEnd@83.75,

ExaminationEnd@89.82

ExaminationStart@80.54,
NewCase@80.77,
ExaminationEnd@83.75,
ExaminationEnd@89.82

53 80.53 av. doctors: 0

NewCase@80.77,

ExaminationEnd@83.75,
ExaminationEnd@89.62,
ExaminationEnd@89.82

54 80.54 av. doctors. O

NewCase@81.44,

ExaminationEnd@83.75,
ExaminationEnd@89.62,
ExaminationEnd@89.82

55 80.77 av. doctors; O

In the Medical-Department-1c model, which is a variant of Medical-Department-1b, the count pool for doctors
is replaced with an individual pool.

2.3.1. A Simulation Scenario for M edical-Department-2

The default ssmulation scenario for the Medical-Department-2 model defines an initial state with three doctors
intheindividual pool "doctors", two nursesin the individual pool "nurses' and three rooms in the count pool
"rooms":

sim scenari o. durationlnSinTi me = 1000;
sim scenario.setuplnitial State = function () {
const dl1 = new Doctor({id: 1, status: oes.ResourceStatusEL. AVAI LABLE}),
d2 = new Doctor ({id: 2, status: oes.ResourceStatusEL. AVAI LABLE}),
d3 = new Doctor({id: 3, status: oes.ResourceStatusEL. AVAI LABLE}),
nl = new Nurse({id: 11, status: oes.ResourceStatusEL. AVAI LABLE}),
n2 = new Nurse({id: 12, status: oes.ResourceStatusEL. AVAlI LABLE});
/1 Initialize the individual resource pools
si m resour cePool s["doctors"]. avai | Resour ces. push(di, d2, d3);
si m resour cePool s["nurses"] . avai | Resour ces. push(nl, n2);
/1 Initialize the count pools
si m resourcePool s["roons"] . avail able = 3;
/'l Schedule initial events
si m FEL. add(new NewCase({occTinme: 1}));

Y ou can run this Medical-Department-2a scenario from the project's GitHub website. An example of arun of
this scenario is shown in the following simulation log:

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 25

https://sim4edu.com/oesjs/core2/Medical-Department-1c/index.html
https://sim4edu.com/oesjs/core2/Medical-Department-2a/index.html

Activity-Based Discrete Event Simulation with OESjs-Core2

Table 2-2. Smulation Log

Step

Time

System State

Future Events

Doctor-1{ st: 1},
Doctor-2{ st: 1},
Doctor-3{ st: 1},
Nurse-11{ st: 2},
Nurse-12{ st: 1} | av.
Nurses: n2, av. rooms: 2,
av. doctors: d1,d2,d3

WalkToRoomStart{ n1} @1
NewCase@1.85

.01,

101

Doctor-1{ st: 1},
Doctor-2{ st: 1},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WakToRoom}},
Nurse-12{ st: 1} | av.
Nnurses: n2, av. rooms. 2,
av. doctors; d1,d2,d3

NewCase@1.85,
WalkToRoomEnd{ n1} @2

N

3

1.85

Doctor-1{ st: 1},
Doctor-2{ st: 1},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WakToRoom}},
Nurse-12{ st: 2} | av.
nurses. , av. rooms: 1, av.
doctors: d1,d2,d3

WalkToRoomStart{ n2} @1
WalkToRoomENnd{ n1} @2
NewCase@6.27

.86,

1.86

Doctor-1{ st: 1},
Doctor-2{ st: 1},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WakToRoom}},
Nurse-12{ st: 2, act:
{WakToRoom}} | av.
nurses. , av. rooms: 1, av.
doctors; d1,d2,d3

WalkToRoomENnd{ n1} @2
WalkToRoomEnd{ n2} @3
NewCase@6.27

[{e]

9:

2.28

Doctor-1{ st: 2},
Doctor-2{ st: 1},
Doctor-3{ st: 1},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WakToRoom}} | av.
nurses: nl, av. rooms: 1,
av. doctors. d2,d3

ExaminationStart{ d1} @2.
WalkToRoomEnd{ n2} @3
NewCase@6.27

2.29

Doctor-1{ st: 2, act:
{Examination} },
Doctor-2{ st: 1},
Doctor-3{ st: 1},
Nurse-11{ st: 1, act:

WalkToRoomENnd{ n2} @3
NewCase@6.27,
ExaminationEnd{ d1, } @1

[{e]

9|

0.83

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 26

Activity-Based Discrete Event Simulation with OESjs-Core2

Step

Time

System State

Future Events

{}}, Nurse-12{ st: 2, act:
{WakToRoom}} | av.
nurses: nl, av. rooms: 1,
av. doctors; d2,d3

3.99

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2},
Doctor-3{ st: 1},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 1, av. doctors: d3

ExaminationStart{ d2} @4,
NewCase@6.27,
ExaminationEnd{ di, } @1

0.83

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 1, av. doctors. d3

NewCase@6.27,
ExaminationEnd{ d1} @10
ExaminationEnd{ d2, } @1

83,
3.28

6.27

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination} },
Doctor-3{ st: 1},
Nurse-11{ st: 2, act: {}},
Nurse-12{ st: 1, act: {}} |
av. NUrses; n2, av. rooms.
0, av. doctors: d3

WalkToRoomStart{ n1} @6
NewCase@7.19,
ExaminationEnd{ d1, } @1

ExaminationEnd{ d2} @13

.28,

0.83,
28

10

6.28

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WakToRoom}},
Nurse-12{ st: 1, act: {}} |
av. nurses. n2, av. rooms:
0, av. doctors: d3

NewCase@7.19,
WalkToRoomEnd{ n1} @8
ExaminationEnd{ di, } @1

ExaminationEnd{ d2} @13

0.83,
28

11

7.19

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WakToRoom}},
Nurse-12{ st: 1, act: {}} |

NewCase@8.5,
WalkToRoomEnd{ n1} @8
ExaminationEnd{ d1, } @1

ExaminationEnd{ d2} @13

77,
0.83,
28

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 27

Activity-Based Discrete Event Simulation with OESjs-Core2

Step

Time

System State

Future Events

av. Nurses; N2, av. rooms;
0, av. doctors; d3

12

85

Doctor-1{ st: 2, act:
{Examination} },
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WakToRoom}},
Nurse-12{ st: 1, act: {}} |
av. nurses. n2, av. rooms:
0, av. doctors: d3

WalkToRoomEnd{ n1} @8
ExaminationEnd{ d1} @10
NewCase@13.06,

ExaminationEnd{ d2} @13

83,

28

13

8.77

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act: {}},
Nurse-12{ st: 1, act: {}} |
av. nurses. n2, av. rooms:
0, av. doctors: d3

WalkToRoomStart{ n1} @8
ExaminationEnd{ d1} @10
NewCase@13.06,

ExaminationEnd{ d2} @13

.78,
83,

28

14

8.78

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination} },
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WakToRoom}},
Nurse-12{ st: 1, act: {}} |
av. nurses. n2, av. rooms:
0, av. doctors: d3

WalkToRoomEnd{ n1} @1
ExaminationEnd{ d1} @10
NewCase@13.06,

ExaminationEnd{ d2} @13

15

10.66

Doctor-1{ st: 2, act:
{Examination} },
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act: {}},
Nurse-12{ st: 1, act: {}} |
av. nurses. n2, av. rooms:
0, av. doctors: d3

D.66,
83,

28

WalkToRoomStart{ n1} @10.67,

ExaminationEnd{ d1} @10
NewCase@13.06,

ExaminationEnd{ d2} @13

16

10.67

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WakToRoom}},
Nurse-12{ st: 1, act: {}} |

ExaminationEnd{ d1} @10
WalkToRoomENnd{ n1} @1
NewCase@13.06,

ExaminationEnd{ d2} @13

83,

28

83,
2.65,

28

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 28

Activity-Based Discrete Event Simulation with OESjs-Core2

Step

Time

System State

Future Events

av. Nurses; N2, av. rooms;
0, av. doctors; d3

17

10.83

Doctor-1{ st: 2, act:

{}}, Doctor-2{ st: 2,

act: { Examination} },
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WakToRoom}},
Nurse-12{ st: 1, act: {}} |
av. nurses; n2, av. rooms:
0, av. doctors: d3

ExaminationStart{ d1} @10.84
WalkToRoomENnd{ n1} @12.

NewCase@13.06,

ExaminationEnd{ d2} @13

18

10.84

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WakToRoom}},
Nurse-12{ st: 1, act: {}} |
av. nurses; n2, av. rooms:
0, av. doctors: d3

WalkToRoomENnd{ n1} @12.

NewCase@13.06,
ExaminationEnd{ d2, } @1
ExaminationEnd{ d1} @15

3.28,
87

19

12.65

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination} },
Doctor-3{ st: 2},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n2,n1, av.
rooms: 0, av. doctors:

ExaminationStart{ d3} @17
NewCase@13.06,

ExaminationEnd{ d2} @13

ExaminationEnd{ d1} @15

.66,

28,
87

20

12.66

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n2,n1, av.
rooms: 0, av. doctors:

NewCase@13.06,

ExaminationEnd{ d2} @13

ExaminationEnd{ di, } @1
ExaminationEnd{ d3} @18

28,
5.87,
38

21

13.06

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act:
{Examination} },
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}

ExaminationEnd{ d2} @13

ExaminationEnd{ d1} @15
NewCase@16.21,
ExaminationEnd{ d3} @18

28,
87,

38

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 29

Activity-Based Discrete Event Simulation with OESjs-Core2

Step

Time

System State

Future Events

| av. nurses: n2,n1, av.
rooms: 0, av. doctors:

22

13.28

Doctor-1{ st: 2, act:
{Examination} },
Doctor-2{ st: 2, act:
{}}, Doctor-3{ st: 2,

act: { Examination} },
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n2,n1, av.
rooms: 0, av. doctors:

ExaminationStart{ d2} @13
ExaminationEnd{ d1} @15
NewCase@16.21,

ExaminationEnd{ d3} @18

3.29,
87,

38

23

13.29

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act:
{Examination} },
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n2,n1, av.
rooms: O, av. doctors:

ExaminationEnd{ d1} @15
NewCase@16.21,

ExaminationEnd{ d3, } @1
ExaminationEnd{ d2} @22

87,

8.38,
51

24

15.87

Doctor-1{ st: 1, act:

{}}, Doctor-2{ st: 2,

act: { Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n2,n1, av.
rooms: 1, av. doctors: d1

NewCase@16.21,
ExaminationEnd{ d3} @18
ExaminationEnd{ d2, } @2

38,
2.51

25

16.21

Doctor-1{ st: 1, act:

{}}, Doctor-2{ st: 2,

act: { Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 2, act: {}} |
av. nurses: nl, av. rooms:
0, av. doctors: d1

WalkToRoomStart{ n2} @16.22,

NewCase@17.02,
ExaminationEnd{ d3, } @1
ExaminationEnd{ d2} @22

8.38,
51

26

16.22

Doctor-1{ st: 1, act:

{}}, Doctor-2{ st: 2,

act: { Examination} },
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WakToRoom}} | av.

WalkToRoomENnd{ n2} @1
NewCase@17.02,

ExaminationEnd{ d3,} @1
ExaminationEnd{ d2} @22

~

8.38,
51

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2

30

Activity-Based Discrete Event Simulation with OESjs-Core2

Step

Time

System State

Future Events

nurses. nl, av. rooms: O,
av. doctors; d1

27

17

Doctor-1{ st: 1, act:

{}}, Doctor-2{ st: 2,

act: { Examination} },
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 2, act: {}} |
av. nurses; nl, av. rooms:
0, av. doctors: d1

WalkToRoomStart{ n2} @1

NewCase@17.02,

ExaminationEnd{ d3, } @1
ExaminationEnd{ d2} @22

7.01,

8.38,
51

28

17.01

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,

act: { Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WakToRoom}} | av.
nurses: nl, av. rooms: O,
av. doctors: d1

NewCase@17.02,

ExaminationEnd{ d3} @18
WalkToRoomEnd{n2, } @
ExaminationEnd{ d2} @22

38,
19.47,
51

29

17.02

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,

act: { Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WakToRoom}} | av.
nurses: nl, av. rooms:. 0,
av. doctors: d1

ExaminationEnd{ d3} @18
WalkToRoomENnd{ n2} @1

NewCase@19.67,

ExaminationEnd{ d2} @22

38,
D.47,

51

30

18.38

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,

act: { Examination}},
Doctor-3{ st: 2, act: {}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WakToRoom}} | av.
nurses. nl, av. rooms: O,
av. doctors; d1

ExaminationStart{ d3} @18.39,

WalkToRoomENnd{ n2} @1

NewCase@19.67,

ExaminationEnd{ d2} @22

D.47,

51

31

18.39

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,

act: { Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WakToRoom}} | av.

WalkToRoomEnd{ n2} @1

NewCase@19.67,

ExaminationEnd{ d2, } @2
ExaminationEnd{ d3} @27

D.47,

2.51,
41

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2

31

Activity-Based Discrete Event Simulation with OESjs-Core2

Step

Time

System State

Future Events

nurses. nl, av. rooms: O,
av. doctors; d1

32

19.47

Doctor-1{ st: 1, act:

{}}, Doctor-2{ st: 2,

act: { Examination} },
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 2, act: {}} |
av. nurses; nl, av. rooms:
0, av. doctors: d1

WalkToRoomStart{ n2} @1
NewCase@19.67,

ExaminationEnd{ d2, } @2
ExaminationEnd{ d3} @27

9.48,

2.51,
41

33

19.48

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,

act: { Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WakToRoom}} | av.
nurses: nl, av. rooms: O,
av. doctors: d1

NewCase@19.67,

WalkToRoomEnd{ n2} @2
ExaminationEnd{ d2, } @2
ExaminationEnd{ d3} @27

D.95,
2.51,
41

19.67

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,

act: { Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WakToRoom}} | av.
nurses: nl, av. rooms:. 0,
av. doctors: d1

WalkToRoomEnd{ n2} @2
ExaminationEnd{ d2} @22
ExaminationEnd{ d3} @27
NewCase@28.91

D.95,
51,
41,

35

20.95

Doctor-1{ st: 1, act:

{}}, Doctor-2{ st: 2,

act: { Examination} },
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 2, act: {}} |
av. nurses. nl, av. rooms:
0, av. doctors: d1

WalkToRoomStart{ n2} @2
ExaminationEnd{ d2} @22
ExaminationEnd{ d3} @27
NewCase@28.91

0.96,
51,
41,

36

20.96

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,

act: { Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WakToRoom}} | av.

ExaminationEnd{ d2} @22
WalkToRoomENd{ n2} @21
ExaminationEnd{ d3} @27
NewCase@28.91

51,
3.2,
41,

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 32

Activity-Based Discrete Event Simulation with OESjs-Core2

Step

Time

System State

Future Events

nurses. nl, av. rooms: O,
av. doctors; d1

37

2251

Doctor-1{ st: 1, act:

{}}, Doctor-2{ st: 2,

act: {}}, Doctor-3{ st:

2, act: { Examination} },
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 2, act:
{WakToRoom}} | av.
nurses. nl, av. rooms: O,
av. doctors: d1

ExaminationStart{ d2} @22.52,
WalkToRoomEnd{ n2} @23.2,
ExaminationEnd{ d3} @27.41,

NewCase@28.91

38

22,52

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,

act: { Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WakToRoom}} | av.
nurses: nl, av. rooms: O,
av. doctors: d1

WalkToRoomENd{ n2} @23.2,
ExaminationEnd{ d3} @27.41,

NewCase@28.91,

ExaminationEnd{ d2} @30.15

39

232

Doctor-1{ st: 2, act:
{}}, Doctor-2{ st: 2,

act: { Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 0, av. doctors:

ExaminationStart{ d1} @23.21,
ExaminationEnd{ d3} @27.41,

NewCase@28.91,

ExaminationEnd{ d2} @30.15

40

2321

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 0, av. doctors:

ExaminationEnd{ d3} @27.41,

NewCase@28.91,

ExaminationEnd{ d2, } @30.15,
ExaminationEnd{ d1} @31.35

41

2741

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act: {}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}

ExaminationStart{ d3} @27.42,

NewCase@28.91,

ExaminationEnd{ d2} @30,15,
ExaminationEnd{ d1} @31.35

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2

33

Activity-Based Discrete Event Simulation with OESjs-Core2

Step

Time

System State

Future Events

| av. nurses: n1,n2, av.
rooms: 0, av. doctors:

42

27.42

Doctor-1{ st: 2, act:
{Examination} },
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: O, av. doctors:

NewCase@28.91,

ExaminationEnd{ d2} @30
ExaminationEnd{ d1, } @3
ExaminationEnd{ d3} @33

15,
1.35,

43

28.91

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 0, av. doctors:

ExaminationEnd{ d2} @30
ExaminationEnd{ d1} @31
ExaminationEnd{ d3} @33
NewCase@34.09

15,
35,

30.15

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 1, act:

{}}, Doctor-3{ st: 2,

act: { Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 1, av. doctors: d2

ExaminationEnd{ d1} @31
ExaminationEnd{ d3} @33
NewCase@34.09

35,

45

31.35

Doctor-1{ st: 1, act:

{}}, Doctor-2{ st: 1,

act: {}}, Doctor-3{ st:

2, act: { Examination} },
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 2, av. doctors:
d2,d1

ExaminationEnd{ d3} @33
NewCase@34.09

Section 2.4. Statistics

In activity-based Discrete Event Simulation, a simulator can automatically collect the following statistics per
activity type and simulation run:

1. Throughput quantities: (a) number of enqueued activities, (b) number of started activities (= number of
dequeued activities), and (¢) number of completed activities.

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 34

Activity-Based Discrete Event Simulation with OESjs-Core2

2. Queue length statistics. maximum gueue length, average queue length, etc.
3. Waiting time statistics: maximum waiting time, average waiting time, etc.
4. Cycletime statistics: maximum cycle time, average cycle time, etc.

5. Resource utilization per resource object.

For instance, after running the Medical-Department-2 scenario , the following statistics results are shown per
activity type:

Table 2-3. Satistics

Per activity type

{"queueLength":{"max":1}, "resUtil":
{"11":0.17,"12":0.13,"rooms":0.1}, "waitingTime":
WakToRoom {"max":0.78}, "cycleTime":{ "max":3.07},
"enqueuedActivities':22, "dequeuedActivities':21,
"startedActivities':21, "completedActivities": 20}

{"queueLength":{"max":2}, "resUtil":
{"1":0.38,"2":0.4,"3":0.44,"rooms":0.4}
"waitingTime":{ "max":1.99}, "cycleTime":
{"max":10.16}, "enqueuedActivities':20,
"dequeuedActivities': 20, "startedActivities': 20,
"completedActivities': 18}

Examination

Section 2.5. Simulation Experiments

There are different types of simulation experiments. In a simple experiment, a simulation scenario is run
repeatedly by defining a number of replications (iterations) for being able to compute average statistics.

In a parameter variation experiment, several variants of a simulation scenario (called experiment scenarios), are
defined by defining value sets for certain model parameters (the experiment parameters), such that a parameter
variation experiment run consists of a set of experiment scenario runs, one for each combination of parameter
values.

An experiment type is defined for a given simulation model and an experiment of that type is run on top of a
given simulation scenario for that model.

When running an experiment, the resulting statistics data are stored in a database, which allows looking them up
later on or exporting them to data analysis tools (such as Microsoft Excel or RStudio)

2.6.1. Simple Experiments

A simple experiment type is defined with asi m exper i ment Type record on top of amodel by defining (1)
the number of replications and (2) possibly alist of seed values, one for each replication. The following code
shows an example of a simple experiment type definition:

1 |simexperiment Type = {

2 title: "Sinple Experinent with 10 replications, each running for 1000 tine units (days)",
3 nnr Of Repl i cati ons: 10,

4 seeds: [123, 234, 345, 456, 567, 678, 789, 890, 901, 1012]

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 35

https://sim4edu.com/oesjs/core2/Medical-Department-2/index.html

Activity-Based Discrete Event Simulation with OESjs-Core2

51};

Running this simple experiment means running the underlying scenario 10 times, each time with another
random seed, as specified by the list of seeds. The resulting statistics are composed of the user-defined statistics
and the generic statistics (per activity type) for each replication complemented with a summary statistics listing
averages, standard deviations, min/max values and confidence intervals.

When no seeds are defined, the experiment is run with implicit random seeds using JavaScript's built-in random
number generator, which implies that experiment runs are not reproducible.

The following table shows the experiment results of a simple experiment defined for the Medical-
Department-1c model.

Table 2-4. Experiment Results

Statistics per activity type
Replication Examination
enqu start compl gLen wTime cTime

1 284 283 282 5 12.36 20.06
2 314 314 314 6 13.28 22.66
3 297 296 294 8 20.77 29.25
4 298 297 296 8 15.28 22.66
5 296 295 292 5 14.44 21.92
6 318 318 316 16 40.64 50.23
7 299 299 298 8 18.21 25.75
8 334 327 325 12 30.8 40.35
9 296 295 292 7 16.82 25.79
10 302 301 299 6 13.12 22.1

Average 303.8 302.5 300.8 8.1 19.57 28.08
Std.dev. 14.29 13.13 13.25 3.45 9.18 9.72

Minimum 284 283 282 5 12.36 20.06
Maximum 334 327 325 16 40.64 50.23
Cl Lower 294.8 294.6 202.7 59 13.67 2151
Cl Upper 3115 309.7 308.2 9.9 24.25 32.99

2.6.2. Parameter Variation Experiments

A parameter variation experiment is defined with (1) a number of replications, (2) alist of seed values (one for
each replication), and (3) one or more experiment parameters.

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 36

https://sim4edu.com/oesjs/core2/Medical-Department-1c/index.html
https://sim4edu.com/oesjs/core2/Medical-Department-1c/index.html

Activity-Based Discrete Event Simulation with OESjs-Core2

An experiment parameter must have the same name as the model parameter to which it refers. It defines a set of
values for this model variable, either using aval ues field or acombination of ast ar t Val ue and endVal ue
field (and st epSi ze for anon-default increment value) asin the following example.

The following code shows an example of a parameter variation experiment definition (on top of the Inventory-
Management simulation model):

1 |simexperinent Types[1] = {

2 id: 1,

3 title: "Paraneter variation experinment for exploring reorderinterval and targetlnventory'

4 nnt O Repl i cati ons: 10,

5 seeds: [123, 234, 345, 456, 567, 678, 789, 890, 901, 1012],

6 par anet er Defs: [

7 {nane: "revi ewPol i cy", values:["periodic"]},

8 {name: "reorderlnterval", values:[2,3,4]},

9 {nane: "targetlnventory", startVal ue: 80, endVal ue: 100, stepSi ze: 10},
10]
AL

Notice that this experiment definition defines 9 experiment scenarios resulting from the combinations of the
values 2/3/4 and 80/90/100 for the parameters reorderInterval and targetlnventory. Running this parameter
variation experiment means running each of the 9 experiment scenarios 10 times (each time with another
random seed, as specified by the list of seeds). The resulting statistics, as shown in the following table, is
computed by averaging al statistics variables defined for the given model.

Experiment Results
Expaiment Parameter values Statisties
SEENE nmrOfStockOuts lostSales servicel evel
0 periodic,2,80 21.8 180.7 97.82
1 periodic,2,90 74 55.9 99.26
2 periodic,2,100 21 15.8 99.79
3 periodic,3,80 86.6 855.6 91.34
4 periodic,3,90 40.6 3775 95.94
5 periodic,3,100 16.3 139.8 98.37
6 periodic,4,80 1715 2067.5 82.85
7 periodic,4,90 110.6 1238.3 88.94
8 periodic,4,100 63.8 661.4 93.62

2.6.1. Storage and Export of Experiment Results

In OESjs-Corel, an experiment's output statistics datais stored in a browser-managed database using
JavaScript's IndexedDB technology. The name of this database is the same as the name of the simulation model.
It can be inspected with the help of the browser's devel oper tools, which are typically activated with the key
combination [Shift]+[Ctrl]+[1]. For instance, in Google's Chrome browser, one has to go to Application/Storage/
IndexedDB.

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 37

https://sim4edu.com/oesjs/core1/Inventory-Management/index.html
https://sim4edu.com/oesjs/core1/Inventory-Management/index.html

Activity-Based Discrete Event Simulation with OESjs-Core2

The experiment statistics database consists of three tables containing data about (1) experiment runs, (2)
experiment scenarios, and (3) experiment scenario runs, which can be exported to aCSV file.

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2

38

Activity-Based Discrete Event Simulation with OESjs-Core2

Chapter 3. Special Issuesin Activity-Based Modeling

Section 3.1. Waiting Timeouts

In certain cases, enqueued activities may have awaiting timeout, which means that such an enqueued activity
will not be started, but removed from the queue, if its waiting time is longer than its timeout. This mechanism
can be used for modeling the behavior of humans loosing patience in a queue called reneging in queuing theory.
For instance, in the following DPMN diagram, the activity TakeOrder has awaiting timeout:

O
[-—)

OrderCal e

In OESjs, this can be coded by defining a class-level ("static") function wai t i ngTi meout in aresource-
constrained activity class, as shown in the following example. Typically, the timeout (or maximum waiting
time) provided by such afunction is sampled from a probability distribution function.

cl ass TakeOrder extends aCTIVITY {

constructor ({id, startTime, duration}={}) {
super ({id, startTine, duration});

}

static duration() {
return rand. uni form(1, 4);

}

static waitingTimeout () {
return rand.uniformnt(3, 6);

Section 3.2. Admissible Resour ces

When activities admit using more resources than required, this means they can be started as soon as the required
number of resources are available, but they can a so be started with a greater number of resources, typically
implying afaster performance. Thisisillustrated in scenario 2 of the model L oad-Haul-Dump-1, where two
wheel loaders, instead of just one, can be allocated for performing a Load activity.

Thisis specified by the resource cardinality constraint 1..2 in the OE class model below for the

Load-Wheel Loader association at the WheelLoader side. The meaning of this resource cardinality constraint is
that the activity type Load requires at least one wheel loader and allows up to two wheel loaders to be allocated
for aLoad activity.

Chapter 3. Special Issues in Activity-Based Modeling 39

https://sim4edu.com/oesjs/core2/load-haul-dump-1/

Activity-Based Discrete Event Simulation with OESjs-Core2

Figure 3-1. An OE class design model for the Load-Haul-Dump system.

«object type» «enumeration»
Truck OES::Resour ceStatusHL
<event type» status_: ResourceStatuseL | [AVAILABLE
HaulRequest capacity : Integer = 15 BUSY
- OUT_OF_ORDER
quantity : Integer —
1 «r»
«activity type» «object type»
GoToL oadingSite WheelL oader
«rv» duration() : Decimal { Tri(30,50,40)} * status : ResourceStatusEL
«activity type» 1.2 >
L oad
«rv» duration() : Decimal {U(10,20)] * «activity type»
* Haul
«activity type» «rv» duration() : Decimal { Tri(40,60,55)
Dump
«rv» duration() : Decimal {Tri(5,2515)} ™| | «ectivity type»
GoBackToL oadingSite
«activity type» «rv» duration() : Decimal { Tri(30,50,40)
GoHome
«rv» duration() : Decimal {Tri(30,50,40)} *

Section 3.3. Organizational Positions and Resour ce Pools

Since a business process happensin the context of an organization (as its owner), it is natural to consider the
concept of organizational positions.

Any performer role of an activity type has a performer type asits range. For instance, in the following OE
class design model, the (implicitly named) performer role order Taker of the activity type TakeOrder hasthe
performer type Order Taker asits range. Likewise the object type PizzaMaker is a performer type.

Each performer type corresponds to an organizational position. For instance, in the following OE class model,
both OrderTaker and PizzaMaker are organizational positions, for which an organization hires a number of

human resources, forming corresponding resource pools (called order Takers and pizzaMakers). These resource

pools correspond to the direct populations of the two organizational positions.

«object type»
Order Taker
status : ResourceStatusEL

«activity type» 1 «r» «ar»

TakeOrder
«rv» duration() : Decimal {U(1.4 0.1 2
0.1 [«object type»
«activity type» > .P' zzaMaker
M akePizza status : ResourceStatusEL

«rv» duration() : Decimal {Tri(3.4.6)}

Chapter 3. Special Issues in Activity-Based Modeling

40

Activity-Based Discrete Event Simulation with OESjs-Core2

An organizational position may subsume more than one performer role. In the model above, the organizational
position PizzaMaker is an alternative resource subtype of the organizational position OrderTaker, as indicated
by the generalization arrow of category

Resour ce Pools Assigned to Multiple Activity Types

When aresource pool represents an organizational position charged with playing n performer roles, it is used by
all n corresponding activity types.

Section 3.4. Alter nate Resour ce Pools

Certain activities allow alternative resources, when no standard resources are available. For instance, in a pizza
service company, when no order taker is available, and a new order call comesin, an available pizza baker can
take the order. Or in a hospital, where nurses guide patients to an examination room, when no nurse is available,
areceptionist can guide a patient to an examination room.

The general conceptual pattern isthat for certain types of activities A (like GuideToRoom), aresourceroler
(like guide) may be played not only by instances of its direct resource type R (like Guide), but also by instances
of an dternative resource type R' (like ExaminationAssistant) or an organizational position P (like Nurse), if
they are a subtypes of R (Guide).

When the resource type R is not abstract, then its instances are the preferred resources of activities of type A,
and its (possibly preference-rank-annotated) «ar» subtypes specify types of alternative resources.

Preferred and Alter nate Resour ce Pools

Resource roles, resource types, organizational positions and resource pools are defined in an OE class design
model. Each resource role has a resource type or an organizational position asits range and an assigned resource
pool .

By default, for any non-abstract resource type R and for any organizational position P assigned as the range of a
resource roler, an OE simulator can create a resource pool with the same (yet pluralized) name, pooling objects
instantiating R or P, and assign it to r as the preferred resource pool.

Section 3.5. Task Priorities

Whenever an activity of type Al ends and thereis still another A1 task in the queue, the activity's resources
would be re-used for the next A1 task unless there is another task (say, of type A2) with higher priority waiting
for one of the resources (rl). In that case, rlisallocated to that task, and all other resources are alocated to the
next Al task, which still hasto wait for rl becoming available again.

For example, in a pizza service, where incoming orders can be taken by pizza makers, and TakeOrder tasks
have a higher priority than MakePizza tasks, when a MakePizza activity performed by a pizza maker in an oven
ends while thereis still another MakePizza task in the queue and there is also a TakeOrder task in the queue, the
pizzamaker is allocated to the TakeOrder task and the oven is allocated to the next MakePizza task, which has
to wait for a pizza maker becoming available.

Algorithmically: Whenever an activity al of type Al ends, collect all pairs <r, t> such that r is a resource used
by al and t is the next task of an activity type A from the dependent activity types DAT of pool(r) with the
highest priority among all DAT with task priorities higher than A1. For all these pairs <r, t>, allocater tot.
Allocate the remaining resources of al to the next Al task, if thereis any, otherwise release them.

Chapter 3. Special Issues in Activity-Based Modeling 41

Activity-Based Discrete Event Simulation with OESjs-Core2

Section 3.6. Task Preemption

Chapter 3. Special Issues in Activity-Based Modeling

42

Activity-Based Discrete Event Simulation with OESjs-Core2

Appendix A. Further Example Models

Section A.1. Make and Deliver Pizza

Image by monkik

A pizza service company takes phone orders for making and delivering pizzas, with the help of order takers,
pizza makers, ovens and a crew of pizzadelivery scooter drivers. From time to time the order takers cannot cope
with the number of incoming calls, and then customers grow impatient and hang up the phone without placing
an order.

For getting a quick impression, you can run this model from the Sim4edu website, or inspect its OESjs code.
Since there is ahigh number of lost orders due to long waiting times in the first model, assigning different

responsibilities to organizational roles for allowing a more flexible use of human resourcesis considered in a
variant of the first model.

Q; Note
Our Make-and-Deliver-Pizza modeling problem is based on the chapter "Example

Model 3: Pizzeria operation” in the book The Art of Process-Centric Modeling with
AnyLogic by Arash Mahdavi.

v Conceptual Model

A pizza service company has resource pools for order takers, pizza makers, pizza ovens, delivery staff and
scooters. While take order activities are performed by an order taker, make pizza activities require both an oven
and a pizza maker. Finally, deliver pizza activities require a delivery staff member and a scooter.

v Conceptual Information Model

The potentially relevant object types are:

1. pizzaservice company,
2. customers,

3. orders,

Appendix A. Further Example Models 43

https://www.flaticon.com/authors/monkik
https://sim4edu.com/oesjs/core2/Make-and-Deliver-Pizza-AN-1/
https://github.com/gwagner57/oes/tree/master/JavaScript/Core2/Load-Haul-Dump-1
https://www.anylogic.com/resources/books/the-art-of-process-centric-modeling-with-anylogic/
https://www.anylogic.com/resources/books/the-art-of-process-centric-modeling-with-anylogic/

Activity-Based Discrete Event Simulation with OESjs-Core2

. pizzas,

. order takers,

. pizzamakers,

. pizzaovens

. delivery scooter drivers,

. scooters.

Potentially relevant types of events and activities are:

N

4

(621

. pizzaordering calls coming in from customers,

. order taking (an activity performed by order takers),

customers hanging up the phone when having to wait for too long,
. pizzamaking (performed by pizza makers using ovens),

. pizzadelivery (performed by delivery staff using scooters).

Object, event and activity types, together with their participation associations, can be visually described in a
conceptual information model in the form of a specia kind of UML class diagram, called Object Event (OE)
class diagram, as shown below.

«object type» «event type» *
customers L order calls
% ordered items
1
«object type» 1 1
order takers «p»
“r> «object type»
pizzeria
* 1
«activity type» «object type» 1 nn
take order pizza makers x
«rp»
«activity type» 2 «rr»
makepizza | « 1
o «object type»
ovens * «rp»
«rr» 1 «rp» *
«activity type» «object type»
deliver pizza | « delivery scooter drivers
«Ir»
* 1
«object type»
scooters *
«rr» ((rp))

Appendix A. Further Example Models 44

Activity-Based Discrete Event Simulation with OESjs-Core2

The association end annotations «rr» and «rp» denote resource roles and resour ce pools. For instance, the
activity type make pizza has two resource roles, pizza makers and oven. A pizza service company has resource
pools for order takers, pizza makers, ovens, delivery scooter drivers and scooters.

Resource roles have resource cardinality constraints. For instance, a make pizza activity requires 2 pizza makers
and 1 oven.

A conceptual OE class diagram like the one above, describes resource roles (like oven), resource role types (like
ovens) and resource cardinality constraints (like "exactly 1") for all types of activities.

An organization defines organizational positions, which are filled by human resources. Each organizational

position is characterized by a set of human resource roles to be played by position holders. In the Pizza Service
organization, there are three positions: order takers, pizza makers and delivery scooter drivers.

Attention

Strictly speaking, order phone calls are instantaneous (zero duration) events while
atake order activity is an event with anon-zero duration. For simplicity, though,
well often say "events' instead of "instantaneous events' or "objects, events and
activities" instead of "objects, instantaneous events and activities'.

v Conceptual Process Model

The following BPMN diagram shows a conceptual process model of the M ake-and-Deliver-Pizza business
process, with three swimlanes for the three performers of the process:

pizza service

order takers pizza makers delivery scooter drivers

Q—' take order —Pp make pizza —Jp= deliver pizza
order calls ‘

O oven scooter

lost order

Notice the BPMN Boundary Timeout Event circle attached to the take order activity representing timeout
events that cancel the activity. They are supposed to model the reneging behavior of waiting customers loosing
their patience and hanging up the phone without placing an order. However, BPMN does not allow restricting
such atimeout mechanism to the waiting phase of a planned activity, that is the time span during which the
planned activity has been enqueued, but not yet started. Rather, it applies to the entire cycle time of take order
activities, which means that also started activities, where the order taker is aready listening to the customer,
may be canceled due to reneging.

Appendix A. Further Example Models 45

Activity-Based Discrete Event Simulation with OESjs-Core2

While BPMN allows modeling the performers of activities with swimlanes, it does not support modeling other
types of resource objects. As aworkaround, we have included the resource objects ovens and scootersin the
form of BPMN Data Objects.

The third, and most severe, issue of the BPMN model isits uniform (semantically overloaded) use of "sequence
flow" arrows for sequencing events and activities. While in the case of all three activities, incoming "sequence
flow" arrows do not mean that an activity is started, but rather that a new planned activity is enqueued (and
only started when all required resources become available), in the case of the event lost order, the incoming
"seguence flow" arrow means that a new event is scheduled to occur immediately.

These three issues of BPMN have been solved in DPMN, where resour ce-dependent activity scheduling (RDAS)
arrows are distinguished from event scheduling arrows, as shown in the following DPMN process diagram:

pizza service
order takers pizzamakers[2] delivery scooter drivers
O
order calls
1
lost orders ovens scooters

Notice how the timeout event circle (with aclock icon) is attached to the three bars of the RDAS arrow
representing the queue of planned order taking activities waiting for the availability of an order taker. This
implies that the timeout applies to the waiting phase only, and not to the entire order taking activity.

A conceptual DPMN process diagram does normally not include any element representing a resource pool. Y et,
it may display the performer roles of activity types, like order taker and pizza maker in the diagram above. Itis
assumed that for any organizational position described in the underlying OE class model, the organization under
consideration has a corresponding resource pool.

v Simulation Design

In our simulation design, we make the following simplifications. We consider only one particular pizza service
company, which does not have to be modeled as an explicit object. Also, we abstract away from individual
customers, orders and pizzas. And we merge the resource roles delivery scooter driver and scooter, keeping
only scooters as resources of deliver pizza activities.

We consider a scenario with two order takers, ten pizza makers, five ovens and 20 scooters.

v Information Design Model

An information design model, in the form of an OE class diagram as shown below, is derived from a conceptual
information model by

1. Abstracting away from items that are not design-relevant.

Appendix A. Further Example Models 46

Activity-Based Discrete Event Simulation with OESjs-Core2

2. Adding properties, functions and methods to object, event and activity classes. In particular, a status
attribute is added to all resource object types, such as Order Taker and Oven, and a class-level duration
function is added to all activity classes.

«enumeration»
{ recurrence rates over 5 hours: OES::Resour ceStatusHEL
[1/6, 1.5, 2/3, 1/6, 1/12]} AVAILABLE
T BUSY
/ OUT_OF _ORDER
«exogenous event type» -
OrderCall «object type»
- T
«rv» recurrence() : Decimal { Exp OrderTaker
status : ResourceStatusEL

«activity type»
TakeOrder 1 «r» «object type»
«rv» duration() : Decimal {U(1,4)} 0.1 PizzaM aker
«rv» waitingTimeout() . Decimal { DU(3,6)} Status : ResourceStatusEL
«activity type» 0.1
M akePizza 2 «r»
«rv» duration() : Decimal {Tri(3,4,6) 1 -
«object type»
| Oven
0.1)
T status : ResourceStatusEL
«activity type» 0.1 1 «object type»
Deliver Pizza Scooter
«rv» duration() : Decimal {Tri(10,15,30)] «T» status : ResourceStatusEL

Figure A-1. An information design model defining object, event and activity types.

Notice how functions representing random variables, like the dur at i on function of all activity types, are
marked with the keyword (or UML 'stereotype’) «rv» standing for "random variable". These random variable
functions sample from a probability distribution function (PDF), which is symbolically indicated with
expressions like Tri(30,40,50) standing for the triangular PDF with lower and upper bounds 30 and 50 and a
median of 40, or DU(1,4) standing for the discrete uniform PDF with lower and upper bounds 3 and 6.

In the case of the event type OrderCall, the random variable function recurrence samples from an exponential
PDF with five different event rates given for the five consecutive hours during which the pizza service operates.

The activity type TakeOrder is associated with the object type Order Taker viathe implicit resourcerole
order Taker (with aresource cardinality constraint of "exactly 1"), indicated with the association end stereotype
«rr» standing for "resource rol€". A resource role assigns resource objects to activities.

Likewise, MakePizza is associated with PizzaMaker and Oven viathe (implicitly named) resource roles
pizzaMakers, having aresource cardinality constraint of "exactly 2", and oven, having aresource cardinality
constraint of "exactly 1".

An OE class design diagram like the one above, defines resource roles (like pizzaMakers), resource role types
(like PizzaMaker) and resource cardinality constraints (like "exactly 2") for al types of activities. Normally,

in an OE simulation there is a one-to-one correspondence between resource role types and resource pools. By
convention, aresource pool has the same name as the corresponding resource role type, yet pluralized and
starting with alowercase character. For instance, the name of the resource pool for PizzaMaker is pizzaMakers.

Appendix A. Further Example Models 47

Activity-Based Discrete Event Simulation with OESjs-Core2

Notice that OrderCall events are exogenous, having a recurrence function defined case-wise for each of the five
hours per day operation of the pizza service company (in the attached invariant box).

For implementing the waiting timeout event defined in the process model, the activity type TakeOrder has a
class-level waitingTimeout function implementing a random variable with PDF U(3,6).

v Process Design Model

A process design model, in the form of a DPMN process diagram as shown below, is derived from a conceptual
process model by abstracting away from items that are not design-relevant and possibly adding certain
computational details.

A DPMN process design model (like the one shown in Figur e A-2) essentially defines the admissible sequences
of events and activities together with their dependencies and effects on objects, while its underlying OE class
design model (like the one shown in Figure A-1) defines the types of objects, events and activities, together
with the participation of objectsin events and activities, including the resource roles of activities, aswell as
resource cardinality constraints, parallel participation constraints, alternative resources, and task priorities.

O (e

OrderCall

LostOrder

Figure A-2. A process design for the Make-and-Deliver-Pizza business process

It isan option, though, to enrich a DPMN process design model by displaying more computational details,
especialy the recurrence of exogenous events, the duration of activities and the most important resource
management features defined in the underlying OE class design model, such as resource roles (in particular,
performer roles can be displayed in the form of Lanes) and resource cardinality constraints. The following
model shows an enriched version of Figure A-2:

{arrivals/minute over 5 hours =
[1/6, 1.5, 2/3, 1/6, 1/12]}

L

y 7/ :OrderTaker pizzaMakerq2] : PizzaMaker :ScooterDriver

/ . \1 4 N\ 4
/
G :TakeOrder :MakePizza :DeliverPizza w
L NN}
LA T LI
wtmout=DU(3,6) duration=Tri(3,4,6) duration=Tri(10,15,30)
:OrderCall l duration=U(1,4) J S

:LostOrder 1 .

o

Figure A-3. An enriched process design model

Such an enriched DPMN process design model includes all computational details needed for an implementation
without a separate explicit OE class design model. In fact, such a process model implicitly defines a

Appendix A. Further Example Models 48

Activity-Based Discrete Event Simulation with OESjs-Core2

corresponding class model. For instance, the enriched DPMN model of Figure A-3 implicitly defines the OE
classmodel of Figure A-1 above.

The notation for defining performer rolesin Lanes consists of a performer role name (such as pizzaMakers) and
and an object type name (such as PizzaMaker) denoting its range, separated by a colon. When the performer
role name is appended by a multiplicity expression in brackets, as in pizzaMaker g 2], this denotes a resource
cardinality constraint (stating that exactly 2 pizzaMakers are required). When only a performer type prefixed
with acolon (such as : Order Taker) is provided, this means that the implicit performer role name is obtained by
lowercasing the performer type name (as in order Taker: Order Taker).

The notation for defining a non-performer resource role, such as oven; Oven, consists of a named object
rectangle, such asthe :Oven rectangle in Figur e A-3, attached to an activity rectangle by means of a connection
line with asmall filled sguare representing a resource link, such as the line between the MakePizza activity
rectangle and the : Oven object rectangle in Figure A-3.

Notice that the model of Figure A-3 does not include any element representing a resource pool. It is assumed
that for any organizational position described in the underlying OE class model, the organization under
consideration has a corresponding resource pool. By default, each resource role of an activity typeis associated
with aresource pool having the same (yet pluralized) name, such that its resource objects are instances of a
corresponding resource role type, which is an organizational position in the case of human resources.

For instance, for the MakePizza activity a pool ovensis assigned to its resource role oven by default. The
members of the pool ovens are instances of the (resource) object type Oven. Likewise, a pool pizzaMakers
is assigned to the MakePizza resource role pizzaMaker. The members of this pool are instances of the
organizational position PizzaMaker. These default pool assignments are normally not shownina DPMN
diagram, but an OE simulator takes care of them.

Combined with its underlying OE class design model, a DPMN process design model provides a
computationally complete specification of asimulation model that can be directly turned into implementations.

v Model Variant: Orders May Also Be Taken by Pizza Makers

For decreasing the number of lost orders due to long waiting times, it is advisable to charge pizza makers with
taking orders whenever no order taker is available. In resource management terminology, the organizational
position pizza maker is redefined by adding the performer role order taker to its portfolio of organizational
roles.

In an OE class diagram, this can be expressed by adding a subtyping arrow from pizza makersto order takers
categorized as an alternative resource subtyping arrow with the stereotype «ar», as shown in the following
diagram:

Appendix A. Further Example Models 49

Activity-Based Discrete Event Simulation with OESjs-Core2

«object type»
Order Taker
status : ResourceStatusEL

«activity type» 1 «rr» «a»

TakeOrder
«rv» duration() : Decimal {U(1.4 0.1 2
0.1 [«object type»
«activity type» > .PI zzaM aker
M akePizza status : ResourceStatusEL

«rv» duration() : Decimal {Tri(3.4.6)}

The DPMN process model is not affected by this change.
Section A.1.1. Implementation with OESjs

The JavaScript-based simulator OESjs-Core2 implements the Object Event Smulation (OES) paradigm, and,
conseguently, allows a straight-forward coding of OE class models and DPMN process models.

v
I mplementing the Information Design M odel

For implementing the OE class design model with OESjs-Core2, we have to code all object types, event types
and activity types specified in the model in the form of JavaScript classes extending the respective OESjs
framework classes oBJECT, eVENT and aCTIVITY. We start with the object type Order Taker shown in the
following diagram:

«enumeration»
OES::Resour ceStatusE|L
AVAILABLE
BUSY
OUT_OF ORDER

«object type»
OrderTaker

status : ResourceStatusEL

The O der Taker object class can be coded in the following way:

cl ass Order Taker extends oBJECT {
constructor({ id, name, status}) {
super(id, nane);
this.status = status;

Appendix A. Further Example Models

Activity-Based Discrete Event Simulation with OESjs-Core2

All object classesinherit ani d attribute and anane attribute from the pre-defined OES foundation class
0BJECT. Since order takers are resource objects, we need to define ast at us property having the pre-defined
enumeration data type Resour ceSt at usEL asitsrange.

The other object classes (PizzaMaker, Oven and Scooter) are coded in the same way.

We next show how to code the event type OrderCall depicted in the following diagram:

{recurrence rates over 5 hours:
[1/6, 1.5, 2/3, 1/6, 1/12]}

T
/
«exogenous event type»
OrderCall

«rv» recurrence() : Decimal { Exp

The Or der Cal | event classis coded in the following way:

class OrderCall extends eVENT {
constructor ({ occTinme, delay}) {
super ({occTi ne, del ay});
}
creat eNext Event () {
return new OrderCall ({delay: OrderCall.recurrence()});
}
static recurrence() {
var hour = Math.floor(simtine / 60);
return rand. exponential (OrderCall.arrival Rates[hour]);

}

/1 arrival rates per minute (for a daily operation for 5 hours)
OderCall.arrival Rates = [1/6, 1/0.66, 1/1.5, 1/6, 1/12];

All event classes inherit an occTi ne attribute and adel ay attribute from the pre-defined OES foundation class
eVENT. Any event in OES can be created either with avalue for the attribute occ Ti ne (standing for occurrence
time) or with avalue for the attribute del ay. In the latter case, the event's occurrence time is automatically
derived by adding the value of del ay to the current simulation time.

Notice how the time-varying recurrence rates (representing order arrival rates) are implemented in the
r ecur r ence function: by first computing the current hour, which is then used as an index for accessing the

corresponding element of the Or der Cal | . arri val Rat es array.

Finally, we show how to code the activity type TakeOrder depicted in the following diagram:

Appendix A. Further Example Models 51

Activity-Based Discrete Event Simulation with OESjs-Core2

«object type»
Order Taker
status : ResourceStatusEL
«activity type»
TakeOrder 1 «r»
«rv» duration() : Decima {U(1,4)} *
«rv» waitingTimeout() : Decimal { DU(3,6)}

The TakeOrder activity classis coded in the following way:

cl ass TakeOrder extends aCTIVITY {

constructor({id, startTinme, duration}={}) {
super({id, startTine, duration});

}

static duration() {
return rand.uni form(1, 4);

}

static waitingTimeout() {
return rand.uniformnt(3, 6);

}

TakeOrder.resourceRol es = {
"order Taker": {range: OrderTaker}

All activity classesinherit the attributesi d, st art Ti me and dur at i on from the pre-defined OES foundation
classaCTI VI TY. When an activity is created as a JS object during a simulation run, the value of itsdur at i on
property is obtained by invoking the dur at i on() function defined as aclass-level ("static") function for its
activity class. These activity duration functions typically implement a random variable by invoking arandom
variate sampling function, such asr and. t ri angul ar (30, 50, 40) , which samples from the triangular
probability distribution function (with min/max=30/50 and mode=40).

Notice how the resource role association between TakeOrder and Order Taker, which defines the resource
reference property TakeOrder::orderTaker, is coded by a corresponding entry in the map-valued class-level

property r esour ceRol es.

v
I mplementing the Process Design M odel

The following process design model specifies six types of events: order call events, take order waiting timeouts,
lost order events, take order activities, make pizza activities, and deliver pizza activities:

O oo
OrderCall

LostOrder

Appendix A. Further Example Models 52

Activity-Based Discrete Event Simulation with OESjs-Core2

A DPMN process design model can be decomposed into a set of event rule design models, one for each type of
event specified in the design model. Since the Lost Or der event and the Del i ver Pi zza activity do not have
any effects, we only need four event rules.

1TheOrderCall eventrule

Starting with the following Or der Cal | event rule design model, we show how the event rules specified by each
of these event rule design models can be coded.

‘ TakeOrder

OrderCall

The Or der Cal | event rule does not define any state changes of affected objects, but only the resource-
dependent scheduling of aTakeOr der activity, which is coded with the following OESs statement:

OrderCal | . successorActivity = "TakeOrder";

2 TheTakeOr der Waiting Timeout event rule

LostOrder

The TakeOr der Waiting Timeout event rule only schedules the immediate occurrence of aLost Or der event,
which is coded with the following OESs event routine within the TakeOr der activity class:

onWai ti ngTi neout () {
var foll owpEvents=[];
fol | owupEvent s. push(new LostOrder());
return foll omupEvents;

3TheTakeOr der event rule

Since activities are composite events, we also have event rules for them. These rules are triggered when an
activity completes, that is, by the corresponding activity end events.

The TakeOr der event rule only takes care of the resource-dependent scheduling of aMakePi zza activity,
which is coded with the following OESs statement:

TakeOrder. successorActivity = "MakePi zza";

Appendix A. Further Example Models 53

Activity-Based Discrete Event Simulation with OESjs-Core2

4 The VakePi zza event rule

The MakePi zza event rule only takes care of the resource-dependent scheduling of aDel i ver Pi zza activity,
which is coded with the following OESs statement:

MakePi zza. successor Activity = "DeliverPizza";

Attention

Y ou can run this model from the OES GitHub website, or inspect its OESjs code.

Section A.2. Load-Haul-Dump

-1

Image by Clker-Free-Vector-Images

A haul service company accepts requests for hauling large quantities of earth from aloading site to adump site,
using dump trucks and wheel loaders.

Y ou can run this model from the Simdedu website, or inspect its OES]s code.

Q; Note

Our Load-Haul-Dump modeling problem is based on the chapter "Example Model
2: Earthmoving operation” in the book The Art of Process-Centric Modeling with
AnyLogic by Arash Mahdavi.

v Conceptual Model

Appendix A. Further Example Models 54

https://sim4edu.com/oesjs/core2/Make-and-Deliver-Pizza-AN-1/
https://github.com/gwagner57/oes/tree/master/JavaScript/Core2/Make-and-Deliver-Pizza-1
https://pixabay.com/users/clker-free-vector-images-3736/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=306852
https://sim4edu.com/oesjs/core2/Load-Haul-Dump-1/
https://github.com/gwagner57/oes/tree/master/JavaScript/Core2/Load-Haul-Dump-1
https://www.anylogic.com/resources/books/the-art-of-process-centric-modeling-with-anylogic/
https://www.anylogic.com/resources/books/the-art-of-process-centric-modeling-with-anylogic/

Activity-Based Discrete Event Simulation with OESjs-Core2

A haul service company has resource pools for dump trucks and wheel loaders. While the activities go (back)
to loading site, haul, dump and go home just require atruck (or awheel loader) as aresource, load activities
require both atruck and awheel loader.

v Conceptual Information Model
The potentially relevant object types are:

1. haul service company,
2. wheel loaders,

3. dump trucks.
Potentially relevant types of events and activities are:

1. haul requests coming in from customers,

2. going to the loading site (an activity performed by trucks and by wheel loaders),
3. loading (performed by wheel loaders using trucks as resources),

4. hauling (performed by trucks),

5. dumping (performed by trucks),

6. going back to loading site (performed by trucks),

7. going home when the job is done (performed by trucks and by wheel 1oaders).

Both object types and event types, together with their participation associations, can be visually described in a
conceptual information model in the form of a specia kind of UML class diagram, called Object Event (OE)
class diagram, as shown below.

Appendix A. Further Example Models

55

Activity-Based Discrete Event Simulation with OESjs-Core2

Figure A-4. A conceptual OE class model describing object, event and activity types.

- 1
«object type»
trucks | o
- «rp» «object type»
capacity haul service companieg
1 «rr» 1 1
0.1 .
— . «object type»
«act|V|ty_type>_> 4 o wheel loaders x i
gotoloading site| 4 «p»
«r» 12 «event type»
«activity type» - oM | wr» haul requests
|load * load site
«activity type» dump site
haul *
«activity type»
dump x
«activity type»
go back to
loading site o
«activity type» {xor}. L
go home *

Notice that the association end annotations «rr» and «rp» denote resource roles and resource pools. A haul
service company has resource pools for trucks and wheel loaders. The activity types haul, dump and go back to
loading site have aresource role truck for assigning atruck to any activity of one of those types. The activity
types go to loading site and go home have either a aresource role truck or aresource role wheel loader, as
indicated by the alternative association constraint expressed with a dashed line annotated with {xor}. The
activity type load has both resource role truck and a resource role wheel loaders for assigning at least one and at

most two wheel loaders to any load activity (asindicated by the multiplicity "1..2" at the «rr» association end at
the class wheel loaders).

v Conceptual Process Model

Theinvolved types of events and activities can be related with each other via resource-dependent activity
scheduling arrows and event scheduling arrows, as shown in the following DPMN process diagram:

go to loading site haul]—{ dump]
no

job done?

haul requests

yes
go back to loading site

Notice that there are three types of arrows in this DPMN diagram:

Appendix A. Further Example Models 56

Activity-Based Discrete Event Simulation with OESjs-Core2

1. Event Scheduling arrows, like the one between load and haul, have the meaning that the succeeding
activity is started as soon as the preceding activity has been completed (there is no need for enqueuing
aplanned activity, since all resources required by the succeeding activity are provided by the preceding
activity). Event Scheduling arrows are not part of BPMN, rather they have been proposed by Schruben
(1983) for Event Graphs.

2. A Multiple Events Scheduling arrow, like the one between requests and go to loading site, means that
one instance of the preceding event type triggers multiple instances of the succeeding event type. In our
example model, this means that one request event is followed by multiple go to loading site activities,
one for each truck and each wheel loader assigned to the job.

3. A Resource-Dependent Activity Scheduling arrow, like the one between go to loading site and load
activities, means that as soon as an activity of the preceding activity type has been completed, a new
planned activity is added to the queue of planned activities of the succeeding type (and started as soon as
all required resources are available).

The model shows that when a haul request comesin, the haul service company deploys multiple trucks and
wheel loaders to the loading site, each of them performing a go to loading site activity, as indicated by the
double arrow between the haul requests event circle and the go to loading site activity rectangle. Each of these
activities leads to enqueuing a new planned load activity, as indicated by the resource-dependent activity
scheduling arrow from the go to loading site activity shape to the load activity shape. Such an enqueued
(planned) activity is going to be dequeued and started as soon as the required resources become available. This
means that as soon as awhedl |oader is available, the next load activity is going to be started. When aload
activity is completed, a haul activity and then adump activity are going to start immediately, as indicated by the
event scheduling arrows between them.

A more complete model prevents trucks to go back to the loading site and perform aload activity even when the
job has been completed during the go back activity (resulting in haul and dump activities with an empty truck).
For avoiding this uneconomic behavior, a second decision if the job has been done needs to be taken after the
go back activity. In addition, the model has to describe that wheel loaders also go home when their job has been
done. Thisis shown in the following refined model:

go to loading site

job done

haul requests

Figure A-5. A refined conceptual process model.
v Simulation Design
In our simulation design, we consider only one particular haul service company, which does not have to be

modeled as an explicit object. Also, we abstract away from the fact that also wheel |oaders have to go to, and
return from, the loading site by assuming that they are already at the site when the dump trucks arrive.

Appendix A. Further Example Models 57

https://dl.acm.org/citation.cfm?id=358460

Activity-Based Discrete Event Simulation with OESjs-Core2

v Information Design Model

In the information design model, we need to define a status attribute for all resource object types, such as Truck
and WheelLoader, and a duration function, typically representing arandom variable, for each activity type:

Figure A-6. An information design model for the Load-Haul-Dump system.

«object type» «enumeration»
Truck OES::Resour ceStatusHL
«<event type» status_: ResourceStatusEL AVAILABLE
HaulRequest capacity : Integer = 15 BUSY
- OUT_OF_ORDER
quantity : Integer
1 «Ir»
«activity type» «object type»
GoToL oadingSite WheelL oader
«rv» duration() : Decimal { Tri(30,50,40)} * status : ResourceStatusEL
«activity type» 1.2 >
L oad
«rv» duration() : Decimal {U(10,20)] * «activity type»
* Haul
«activity type» «rv» duration() : Decimal { Tri(40,60,55)
Dump
«rv» duration() : Decimal {Tri(5,2515)} ™| | «ectivity type»
GoBackToL oadingSite

«activity type» «rv» duration() : Decimal { Tri(30,50,40)

GoHome
«rv» duration() : Decimal {Tri(30,50,40)} *

Notice how functions representing random variables, like the dur at i on function of all activity types, are
marked with the keyword (or UML 'stereotype’) «rv» standing for "random variable". These random variable
functions sample from a probability distribution function (PDF), which is symbolically indicated with
expressions like Tri(30,50,40) standing for the triangular PDF with lower and upper bounds 30 and 50, and a
median of 40.

Each activity typeis associated with Truck or Wheel Loader as their resource role(s), indicated with the
association end stereotype «rr» standing for "resource role".

v Process Design Model

A process design model, in the form of a DPMN process diagram as shown below, is derived from a conceptual
process model by

1. Abstracting away from items that are not design-relevant.
2. Defining event variables, if needed.

3. Defining object variables in the form of Data Object boxes for specifying state changes of objects
affected by events.

4. Formalizing decision conditions on the basis of event and object variables.

Appendix A. Further Example Models 58

Activity-Based Discrete Event Simulation with OESjs-Core2

Figure A-7. A computationally complete process design for the Load-Haul-Dump business process.

modelVariables modelVariables
nmrOfLoads := r.quantity / Truck.capacity nmrOfL oads--
- 7
_ - /
-~
Q—\—> GoToL oadingSite Haul)—»C Dump j
\
r: HaulRequest \\\

| for truck of ‘
[resourcePools["truckS'] [nmrOfL oads > O]

[nmrOfLoads = Q]

The JavaScript-based simulator OESjs implements the Object Event Simulation paradigm, and, consequently,
allows a straight-forward coding of OE class models and DPMN process models.

GoBackToL oadingSite

Section A.2.1. Implementation with OESjs

v Implementing the Information Design Model

For implementing the OE class design model with OESjs, we have to code all object types, event types and
activity types specified in the model in the form of JavaScript classes.

«object type» «enumerations»
Truck OES::Resour ceStatusEL
status : ResourceStatusEL AVAILABLE
capacity : Integer = 15 BUSY
OUT_OF ORDER

The Tr uck object class can be coded with OESjs-Core2 in the following way:

class Truck extends oBJECT {
constructor ({ id, name, status}) {
super(id, nane); // invoke the oBJECT constructor
this.status = status;
}
}

/!l a class-level attribute
Truck. capacity = 15; [/ nB

All object classesinherit ani d attribute and anane attribute from the pre-defined OES foundation class
0BJECT. Since trucks are resource objects, we need to define ast at us property for them. We also define
aclass-level attribute capaci t y for modeling their load capacity, assuming that all trucks have the same

capacity.

The WheelLoader object classis coded in the same way as Truck.

Appendix A. Further Example Models 59

Activity-Based Discrete Event Simulation with OESjs-Core2

«event type»
HaulRequest

quantity : Integer

The Haul Request event class can be coded in the following way:

cl ass Haul Request extends eVENT {
constructor ({ occTinme, delay, quantity}) {
super ({occTi me, del ay});
this.quantity = quantity;
}
onEvent () {

All event classesinherit an occTi ne attribute and adel ay attribute from the pre-defined OES foundation class
eVENT. Any event in OES can be created either with avalue for the attribute occ Ti ne (standing for occurrence
time) or with avalue for the attribute del ay. In the latter case, the event's occurrence time is automatically
derived by adding the value of del ay to the current simulation time. In addition, the HaulRequest event class
has a property quant i t y for specifying the quantity to be hauled.

TheonEvent method of the HaulRequest event classis not part of the information design model. Rather, it is
implementing an event rule specified in the process design model. Consequently, it will be discussed below.

«object type»
Truck
status : ResourceStatusEL
capacity : Integer = 15

1 «rr»

«activity type»
GoToL oadingSite
«rv» duration() : Decimal { Tri(30,50,40)} *

The GoTolLoadingSite activity class can be coded in the following way:

cl ass GoToLoadi ngSite extends aCTlVITY {

constructor ({id, startTinme, duration}={}) {

super ({id, startTinme, duration});

}

static duration() {return rand.triangular(30, 50, 40);}
}
GoToLoadi ngSite. resourceRol es = {

"truck": {range: Truck}

Appendix A. Further Example Models 60

Activity-Based Discrete Event Simulation with OESjs-Core2

All activity classesinherit the attributesi d, st art Ti me and dur at i on from the pre-defined OES foundation
classaCTI VI TY. When an activity is created as a JS object during a simulation run, the value of itsdur at i on
property is obtained by invoking thedur at i on() function defined as a class-level ("static") function for its
activity class. These activity duration functions typically implement a random variable by invoking arandom
variate sampling function, such asr and. t ri angul ar (30, 50, 40) , which samples from the triangular
probability distribution function (with min/max=30/50 and mode=40).

Notice how the resource role association between GoTolLoadingSte and Truck, which defines the resource
reference property GoToLoadingSite::truck, is coded by a corresponding entry in the map-valued class-level
property r esour ceRol es.

v Implementing the Process Design Model

A DPMN process design model can be decomposed into a set of event rule design models, one for each type of
event specified in the design model. Starting with the Haul Request event rule design model, we show how
the event rules specified by each of these event rule design models can be coded in the form of an onEvent

method.

Figure A-8. A design model for the Haul Request event rule.

modelVariables

nmrOfLoads := r.quantity / Truck.capacity

r
-~
-~

-~
Q—\—> GoTolL oadingSite
\

r: HaulRequest AN
| for truck of
resourcePool §"trucks’]

In the following Haul Request event rule method onEvent , all available trucks are allocated to the
current haul request, and, after computing the number of loads, for each of the allocated trucks a new
CGoToLoadi ngSi t e activity is started:

cl ass Haul Request extends eVENT {

onEvent () {
const foll owmupEvents=[],
al | ocat edTrucks = simresourcePool s["trucks"].all ocateAll ();

/'l assign nodel variable
si m nodel . v. nnt O Loads = Math.ceil (this.quantity / Truck.capacity);
for (const t of allocatedTrucks) {

const goActy = new GoTolLoadi ngSite();

/1 assign truck as required resource

goActy.truck = t;

/] start GoTolLoadi ngSite activity

fol | owupEvent s. push(new aCTl VI TYSTART({ pl annedActivity: goActy}));
}

return foll owupEvents;

Appendix A. Further Example Models 61

Activity-Based Discrete Event Simulation with OESjs-Core2

Since activities are composite events, we also have event rules for them. The following GoToLoadingSite event

rule istriggered whenever a GoTolLoadingSite activity is completed, since the completion of an activity counts
asits occurrence event.

Figure A-9. A design model for the GoToLoadi ngSi t e event rule.

GoToL oadingSite Load

Thisrule states that whenever a GoTolLoadingSte activity ends (or is completed), then a new planned Load

activity is enqueued, if no wheel loader is available, or, otherwise, anew Load activity is started. In OESjs, it is
coded in the following declarative way:

GoToLoadi ngSite. successorActivity = "Load"

Such a successor activity assignment allows the simulator to check if the required resources are available and
then start the successor activity, or, otherwise, enqueue anew planned successor activity.

Figure A-10. A design model for the Load event rule.

modelVariables
nmrOfL oads--
/7
/
Load Haul

Thisrule states that whenever a Load activity ends, the model variable nmrOfLoads is decremented by 1, and
aHaul activity isimmediately started (as a successor activity). Since the Haul activity doesn't require any
additional resources, there is no need to enqueue a planned activity and wait for the availability of resources. In
OESs, thisruleis coded in the following way:

cl ass Load extends aCTIVITY {

onActivityEnd() {
const foll owpEvents = [];
/1 decrenment nnr Of Loads counter
si m nodel . v. nnt & Loads- - ;
return foll owupEvents;

}

Load. successorActivity = "Haul ";

Appendix A. Further Example Models 62

Activity-Based Discrete Event Simulation with OESjs-Core2

Notice that the state change expressed in the model Variables object rectangle, the decrementation of

nmrOfLoads, istaken care of intheonAct i vi t yEnd method of the Load activity class. Instead of explicitly

scheduling the start of the succeeding Haul activity in that method, we simply define Haul to be the successor

activity of Load.

Figure A-11. A design model for the Haul event rule.

The Haul event rule states that whenever a Haul activity ends, it isimmediately succeeded by a Dump activity.

It is coded in the following way:

Haul . successorActivity = "Dunmp";

Figure A-12. A design model for the Dunp event rule.

[nmrOfLoads = 0]

The Dump event rule states that when a Dump activity ends and the model variable nmrOfLoads has the
value 0, it isimmediately succeeded by a GoHome activity, otherwiseit isimmediately succeeded by a
GoBackToLoadingSte activity. Theruleis coded by defining the successor activity as a function returning
either "GoBackToL oadingSite" or "GoHome" in the following way:

GoBackToL oadi ngsig

Dunp. successorActivity = function () {
return si mnodel.v.nnrOf Loads === 0 ? "GoHone": " GoBackToLoadi ngSite";

Figure A-13. A design model for the GoBackToLoadi ngSi t e event rule.

Load

[nmrOfLoads > Q]

‘ GoBackToL oadi ngs%

» GoHome

The GoBackToLoadingSite event rule states that when a GoBackToLoadingSite activity ends and the
model variable nmrOfLoads still has a value greater than 0, a new planned Load activity is enqueued;

Appendix A. Further Example Models

63

Activity-Based Discrete Event Simulation with OESjs-Core2

otherwise a GoHome activity isimmediately started. The rule is coded by defining the successor activity of
GoBackToLoadingSte as a function returning either "Load" or "GoHome" in the following way:

GoBackTolLoadi ngSite. successorActivity = function () {
return simnodel.v.nnrOf Loads > 0 ? "Load": " GoHone";

Appendix A. Further Example Models

64

Activity-Based Discrete Event Simulation with OESjs-Core2

Appendix B. Simulator Architecture

OES Core 2 adds the following features to OES Core 1.

* activities as composite events, having a start event and an end event, and a duration as the time in-between

their start and end events

* resource roles with resource cardinality constraints

* resource pools (supported in two forms: count pools and individual pools)

utilization statistics per activity type

automated (a) throughput, (b) queue length, (c) waiting time, (d) cycle/throughput time, and (€) resource

The OES Core 2 simulator's information architecture is described by the following class diagram:

Event

occTimel0..1] : Number

startTime[0..1] : Number
duration[0..1] : Number

«activity type»
ExampleAT
Activity resourceRoles
id : Integer {id}

PERFORMER : String

ResourceRole

toString() : String

plannedActivities : Queue 1

*

onEvent() : List<Event> { abstract}

ActivityStart

plannedActivity

‘—name[l] : String
card[1] : Integer

range[0..1] : ObjectType

ActivityEnd

*

ResourcePool

name: String
]

CountPool

Individual Pool

available : Integer
size: Integer

availResources : List<Object>
busyResources : List<Object>

isAvailable(in card : Integer) : Boolean
allocate(in card : Integer)
release(in card : Integer)

isAvailable(in card : Integer) : Boolean
allocate(in card : Integer) : List<Object>|
release(in resource : Object)

Appendix B. Simulator Architecture

65

Activity-Based Discrete Event Simulation with OESjs-Core2

Index

E
exogenous event, 7
R

random variable, 7
recurrence, 7

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction to Object Event Modeling of Activities
	1.1. Making a Conceptual Model of the System under Investigation
	1.2. Making Simulation Design Models

	2. Activity-Based Discrete Event Simulation with OESjs-Core2
	2.1. Simulation Time
	2.2. Simulation Models
	2.3. Simulation Scenarios
	2.4. Statistics
	2.5. Simulation Experiments

	3. Special Issues in Activity-Based Modeling
	3.1. Waiting Timeouts
	3.2. Admissible Resources
	3.3. Organizational Positions and Resource Pools
	3.4. Alternate Resource Pools
	3.5. Task Priorities
	3.6. Task Preemption

	A. Further Example Models
	A.1. Make and Deliver Pizza
	A.1.1. Implementation with OESjs

	A.2. Load-Haul-Dump
	A.2.1. Implementation with OESjs

	B. Simulator Architecture
	Index

