
Activity-Based Discrete Event Simulation
with OESjs-Core2

How to create and run activity-based Discrete Event simulations with
the simulation library OESjs-Core2 available from the OES GitHub repo

Gerd Wagner G.Wagner@b-tu.de

Copyright © 2020-2022 Gerd Wagner (CC BY-NC)

Published 2022-10-13

Available as HTML and PDF.

Abstract

This tutorial article explains how to use the OESjs-Core2 simulation library, which implements an architecture
for Object Event Simulation (OES), extending the OESjs Core 1 simulator by adding support for activities,
which are composite events with some duration. Activities are composed of a start event and an end event.
Resource-constrained activities are modeled by means of Resource Roles (with Resource Cardinality
Constraints) and Resource Pools. They can only be started when their required resources are available. Due to
this dependency, a simulated activity cannot be scheduled like a simulated event. Rather, it has to be added to a
queue of planned activities, from which it is dequeued, and scheduled via an immediate activity start event, as
soon as the required resources become available.

https://www.facebook.com/sharer.php?u=https://sim4edu.com/oesjs/core2/tutorial.html
https://twitter.com/intent/tweet?url=https://sim4edu.com/oesjs/core2/tutorial.html&text=Tutorial:%20Discrete%20Event%20Simulation%20with%20OESjs
https://www.linkedin.com/shareArticle?mini=true&url=https://sim4edu.com/oesjs/core2/tutorial.html
mailto:?subject=Tutorial:%20Discrete%20Event%20Simulation%20with%20OESjs-Core2&body=This%20article%20shows%20how%20to%20create%20and%20run%20a%20simulation%20model%20with%20the%20JavaScript-based%20simulation%20framework%20OESjs-Core2%20available%20on%20Sim4edu.com.%20OESjs-Core2%20implements%20the%20Object%20Event%20Simulation%20paradigm%2C%20representing%20a%20general%20Discrete%20Event%20Simulation%20approach%20based%20on%20object-oriented%20modeling%20and%20event%20scheduling.%0A%0Ahttps://sim4edu.com/oesjs/core2/tutorial.html
https://sim4edu.com/oesjs/core2/
https://github.com/gwagner57/oes/blob/master/OESjs-Core2.zip
mailto:G.Wagner@b-tu.de
https://creativecommons.org/licenses/by-nc/4.0/
https://sim4edu.com/oesjs/core2/tutorial.html
https://sim4edu.com/oesjs/core2/tutorial.pdf

 Activity-Based Discrete Event Simulation with OESjs-Core2

Table of Contents

List of Figures ... ii

List of Tables ... iii

1. Introduction to Object Event Modeling of Activities ... 1
1.1. Making a Conceptual Model of the System under Investigation .. 1
1.2. Making Simulation Design Models ... 7

2. Activity-Based Discrete Event Simulation with OESjs-Core2 ... 14
2.1. Simulation Time .. 15
2.2. Simulation Models ... 16
2.3. Simulation Scenarios ... 20
2.4. Statistics ... 34
2.5. Simulation Experiments ... 35

3. Special Issues in Activity-Based Modeling .. 39
3.1. Waiting Timeouts ... 39
3.2. Admissible Resources .. 39
3.3. Organizational Positions and Resource Pools ... 40
3.4. Alternate Resource Pools ... 41
3.5. Task Priorities .. 41
3.6. Task Preemption .. 42

A. Further Example Models ... 43
A.1. Make and Deliver Pizza .. 43

A.1.1. Implementation with OESjs ... 50
A.2. Load-Haul-Dump .. 54

A.2.1. Implementation with OESjs ... 59

B. Simulator Architecture ... 65

Index ... i

 i

 Activity-Based Discrete Event Simulation with OESjs-Core2

List of Figures

3-1. An OE class design model for the Load-Haul-Dump system. .. 40

A-1. An information design model defining object, event and activity types. ... 47

A-2. A process design for the Make-and-Deliver-Pizza business process ... 48

A-3. An enriched process design model ... 48

A-4. A conceptual OE class model describing object, event and activity types. .. 56

A-5. A refined conceptual process model. ... 57

A-6. An information design model for the Load-Haul-Dump system. ... 58

A-7. A computationally complete process design for the Load-Haul-Dump business process. 59

A-8. A design model for the HaulRequest event rule. .. 61

A-9. A design model for the GoToLoadingSite event rule. ... 62

A-10. A design model for the Load event rule. ... 62

A-11. A design model for the Haul event rule. ... 63

A-12. A design model for the Dump event rule. ... 63

A-13. A design model for the GoBackToLoadingSite event rule. .. 63

 ii

 Activity-Based Discrete Event Simulation with OESjs-Core2

List of Tables

2-1. Simulation Log .. 21

2-2. Simulation Log .. 26

2-3. Statistics ... 35

2-4. Experiment Results .. 36

 iii

 Activity-Based Discrete Event Simulation with OESjs-Core2

Chapter 1. Introduction to Object Event Modeling of Activities

This chapter shows how to make activity-based Discrete Event Simulation models using the paradigm of Object
Event Modeling and Simulation (OEM&S) with UML Class Diagrams and DPMN Process Diagrams. It is
recommended to first read the tutorial Discrete Event Simulation with OESjs-Core1.

Activities are composite events, having a start event and an end event, and a duration as the time in-between
their start and end events.

For modeling a discrete dynamic system with activities, we have to

1. describe the object types, event types and activity types of the system (in an information model);

2. describe for any resource-constrained activity type, its resource roles and associated resource pools (in
the information model);

3. specify, for any event type, the state changes of affected objects and the follow-up events caused by the
occurrence of an event of that type (in a process model);

4. specify, for any activity type, the state changes of affected objects and follow-up events caused by start
and end events of activities of that type (in the process model).

Section 1.1. Making a Conceptual Model of the System under Investigation

As our first example, we consider a basic model of a medical department of a hospital with just one type of
activity, medical examinations, and one type of resource, doctors. In our second example this model is extended
by adding two other resource types, examination rooms and nurses, and another type of activity: walks to rooms
(the walks of patients to examination rooms guided by nurses).

A basic conceptual model

In our basic model of a medical department we consider just one activity, medical examinations, and one type of
resource, doctors:

• Patients arrive at a medical department at random times.

• If there are no other planned examinations waiting for the availability of a doctor, and a doctor is available,
any newly arrived patient is immediately examined by that doctor. Otherwise, the planned examination of
the newly arrived patient is added to a list of planned examinations (representing a queue).

• The duration of examinations varies, depending on the individual case.

• When an examination by a doctor is completed, the next planned examination is started by the doctor, if
there is still any planned examination in the queue.

The potentially relevant object types of the system under investigation are:

• patients,

• medical departments,

• doctors.

The potentially relevant event types are:

 Chapter 1. Introduction to Object Event Modeling of Activities 1

https://sim4edu.com/oesjs/core1/tutorial.html

 Activity-Based Discrete Event Simulation with OESjs-Core2

• patient arrivals,

• examination starts,

• examination ends,

Instead of considering the event types examination starts and examination ends, we can consider the activity
type examinations. Thus, we get the following conceptual information model (expressed as an OE Class
Diagram, which is a special type of UML class diagram):

«activity type»
examinations

«object type»
doctors

«resource role» 1

*

allocate_a_doctor()

«object type»
medical departments

*

process owner1

«event type»
patient arrivals

«resource pool»*

1

*

process owner

1

«object type»
patients

* 1

*

1

From the diagram we can infer that:

• For patient arrivals and for examinations, there is an association with medical departments providing
the process owner, such that for any patient arrival event and examination activity a specific medical
department is in charge of handling the event or seeing to it that the activity is going to be performed.

• While patient arrivals have two participants: a patient and a medical department, examinations have three
participants: a patient, a medical department and a doctor.

• Examinations have one resource role, doctor, with a resource cardinality constraint of exactly one, which
means that exactly one doctor is required for performing an examination.

• The process owner of an examination, a medical department, has a resource pool for doctors. The
doctors needed for performing examinations at this department are allocated from this pool, and the
department, as the process owner of examinations, has a business procedure for allocating doctors to
planned examinations (using certain policies).

In addition to a conceptual information model, which captures the system's state structure, we also need to
make a conceptual process model that captures the dynamics of the system. A process model can be expressed
with the help of event rules, which define what happens when an event (of a certain type) occurs, or, more
specifically, which state changes and which follow-up events are caused by an event of that type.

The following conceptual process model (in the form of a DPMN Process Diagram) is based on the information
model above. It refers to a medical department as the process owner, visualized in the form of a container
rectangle (called "Pool" in BPMN, but not in DPMN), and to doctor objects, as well as to the event type patient
arrivals and to the activity type examinations.

 Chapter 1. Introduction to Object Event Modeling of Activities 2

 Activity-Based Discrete Event Simulation with OESjs-Core2

m
ed

ic
al

 d
ep

ar
tm

en
t

medical department

IF doctor available

THEN allocate doctor
ELSE queue up a new
planned examination

patient arrivals

medical department

IF queue empty
THEN release doctor

examinations
queue not emptydoctor allocated

This conceptual process model describes two causal regularities in the form of the following two event rules,
each stated with two bullet points: one for describing the state changes and one for describing the follow-up
events brought about by applying the rule.

1. When a new patient arrives:

• if a doctor is available, then she is allocated to the examination of that patient; otherwise, a new
examination task (involving the newly arrived patient) is enqueued;

• if a doctor has been allocated, then the examination of the newly arrived patient is starts.

2. When an examination is completed by a doctor:

• if the queue of planned examinations is empty, then the doctor is released;

• otherwise, the next planned examination by that doctor starts immediately.

We can simplify the model by using a Resource-Dependent Activity Scheduling arrow between the patient
arrivals event type circle and the examinations activity type rectangle, as shown in the following DPMN
process diagram:

m
ed

ic
al

de

pa
rt

m
en

t

examinations

patient arrivals

An extended conceptual model

For being more realistic, we consider the fact that patients first need to be walked by nurses to the room
allocated to their examination before the examination can start. So, in our extended model of a medical
department we consider two other resource types, examination rooms and nurses, and another type of activity:
walks to rooms (the walks of patients to examination rooms guided by nurses):

 Chapter 1. Introduction to Object Event Modeling of Activities 3

 Activity-Based Discrete Event Simulation with OESjs-Core2

• Patients arrive at a medical department at random times.

• When a new patient arrives, and an examination room and a nurse are available, that nurse walks the
patient to that room, otherwise the patient has to wait for the availability of an examination room and a
nurse (administratively, a new planned walk is added to the queue/list of planned walks).

• When a nurse has walked a patient to a room and a doctor is available, an examination of the patient by that
doctor in the room starts; otherwise the patient has to wait for the availability of a doctor (administratively,
a new planned examination is placed in the queue/list of planned examinations).

• When an examination of a patient by a doctor in a room is completed,

1. if there is still another planned examination of a patient waiting in a room for the availability
of a doctor, the doctor goes to that room and starts the examination of that patient; otherwise,
the planned examination of the newly arrived patient is added to a list of planned examinations
(representing a queue);

2. if there is still another planned walk of a patient to a room waiting for the availability of a room, the
room is allocated to this planned walk; if a nurse is available, she walks the patient to that room.

• The duration of walks and examinations varies, depending on the individual case.

The potentially relevant object types of the system under investigation are: patients, medical departments,
rooms, nurses and doctors.

The potentially relevant event types are patient arrivals and the activity types walks to rooms and examinations.

Thus, we get the following conceptual information model expressed as an OE class diagram:

«activity type»
examinations

«object type»
doctors

«object type»
rooms

«performer»1

*

«rr»1

*

allocate_a_room()
allocate_a_nurse()
allocate_a_doctor()

planned walks
planned examinations

«object type»
medical departments

«object type»
patients

*
process owner1

«event type»
patient arrivals

«rp»

*

1
*

1

«rp» *

1
*

process owner

1

*

1

«activity type»
walks to room

*
«rr» 1

*

«object type»
nurses

*

1

«performer» 1

*

«rp»*

1

 Chapter 1. Introduction to Object Event Modeling of Activities 4

 Activity-Based Discrete Event Simulation with OESjs-Core2

Notice that in this model, (a) the performer role is explicitly marked with «performer»: a nurse is a performer
of walks to room while a doctor is a performer of examinations, and (b) the stereotypes «resource role» and
«resource pool» have been abbreviated by «rr» and «rp».

From the diagram we can infer that:

• For the event type patient arrivals and for the activity types walks to rooms and examinations, there is an
association with medical departments providing the process owner.

• While patient arrivals have two participants: a patient and a medical department, walks and examinations
have four participants: a medical department, a patient, a nurse or a doctor, and a room.

• Walks have two resource roles, nurse and room, both with a resource cardinality constraint of exactly one,
which means that exactly one nurse and one room are required for performing a walk.

• Examinations have two resource roles, doctor and room, both with a resource cardinality constraint of
exactly one.

• The process owner of a walk to a room and a subsequent examination, a medical department, has three
resource pools for nurses, rooms and doctors. All required resources needed for performing walks to room
and examinations at this department are allocated from these pools, and the department has corresponding
business procedures for allocating rooms, nurses and doctors using certain allocation policies.

In addition to a conceptual information model, which captures the system's state structure, we also need to
make a conceptual process model that captures the dynamics of the system. A process model can be expressed
with the help of event rules, which define what happens when an event (of a certain type) occurs, or, more
specifically, which state changes and which follow-up events are caused by an event of that type.

The following conceptual process model (in the form of a DPMN Process Diagram) is based on the information
model above. It refers to the object types medical departments and doctors, as well as to the event type patient
arrivals and to the activity type examinations.

m
ed

ic
al

 d
ep

ar
tm

en
t

medical department

IF room and nurse available
THEN allocate room and nurse
ELSE queue up a new planned

walk

patient arrivals

medical department

IF waiting line not empty
AND nurse available

THEN allocate nurse and re-allocate
room to next patient
ELSE release room

IF there is still a planned examination
THEN re-allocate doctor

ELSE release doctor

examinationswalks to room

medical department

IF waiting line not empty
AND room available

THEN re-allocate nurse to
next patient's walk

ELSE release nurse
IF doctor available

THEN allocate doctor
ELSE queue up a new
planned examination

room allocated
doctor allocated

nurse re-allocated

room re-allocated

doctor re-allocated

 Chapter 1. Introduction to Object Event Modeling of Activities 5

 Activity-Based Discrete Event Simulation with OESjs-Core2

This process model describes three causal regularities in the form of the following three event rules:

1. When a new patient arrives:

• if a room and a nurse are available, they are allocated to the walk of that patient to that room,
otherwise a new planned walk is placed in the corresponding queue;

• if a room has been allocated, then the nurse starts walking the patient to the room.

2. When a walk of a patient and nurse to a room is completed:

• if there is still a planned walk in the queue and a room is available, then the room is allocated and
the nurse is re-allocated to the walk of the next patient to that room;
if a doctor is available, she is allocated to the examination of that patient, else a new planned
examination of that patient is queued up;

• if a doctor has been allocated, then the examination of the patient starts;
if the nurse has been re-allocated, she starts walking the next patient to the allocated room.

3. When an examination of a patient is completed by a doctor in a particular room:

• if there is still a planned examination (of another patient in another room), the doctor is re-allocated
to that planned examination, else the doctor is released;
if the waiting line is not empty, the room is re-allocated to the next patient, else it is released;

• if the doctor has been re-allocated to a planned examination, that examination starts;
if the room has been re-allocated to another patient and a nurse is available, that nurse starts
walking the patient to the room.

Again, we can simplify the model by using Resource-Dependent Activity Scheduling arrows resulting in an
Activity Network model, as shown in the following DPMN process diagram:

m
ed

ic
al

 d
ep

ar
tm

en
t :

ex

am
in

at
io

n

walks to room

patient arrivals

examinations

We can display the two performer roles doctor and nurse with the help of two corresponding swimlanes shown
within the process rectangle:

 Chapter 1. Introduction to Object Event Modeling of Activities 6

 Activity-Based Discrete Event Simulation with OESjs-Core2

m
ed

ic
al

 d
ep

ar
tm

en
t :

ex

am
in

at
io

n

walks to room

patient arrivals

examinations

nu
rs

e
do

ct
or

Attention

Notice that the use of swimlanes (marking disjoint subrectangles) is a convenient

visual syntax for displaying the performer roles when the different performers have

a non-overlapping set of activity types. However, when activities of a certain type

are performed jointly by more than one performer (e.g., when a doctor and a nurse

jointly perform an examination), a different visual syntax needs to be introduced.

Section 1.2. Making Simulation Design Models

When making a simulation design based on a conceptual model of the system under investigation, we may
abstract away from certain items of the conceptual model for obtaining a sufficiently simple design. The right
degree of abstraction depends on the purpose of the model.

In our example of a medical department, the purpose of the simulation model is to compute the maximum
queue length and the resource utilization for all types of activities. So, we may abstract away from the object
type patients since we don't need any information about individual patients. If we don't need utilization
statistics per doctor, but only the average utilization of all doctors, then we may also abstract away from the
object type doctors This is the approach chosen in our design models Medical-Department-1a and Medical-
Department-1b, while we keep the object type doctors for modeling individual doctors in the design model
Medical-Department-1c.

Since we abstract away from individual patients, we rename patient arrival events to NewCase events, each of
them representing a new case for an examination to be planned and performed.

The event type NewCase is a type of exogenous events, which are not caused by any causal regularity of the
system under investigation and, therefore, have to be modeled with a recurrence function that allows to compute
the time of the next occurrence of an event of that type.

1.2.1. Design models based on the basic conceptual model

We model the random variations of two variables, the recurrence of new cases and the duration of examinations,
in the form of random variables as special class-level ("static") functions, with a stereotype «rv», in the class to
which they belong, as shown in the diagrams below.

 Chapter 1. Introduction to Object Event Modeling of Activities 7

 Activity-Based Discrete Event Simulation with OESjs-Core2

The recurrence of NewCase events is modeled as a random variable with an exponential distribution having
an event rate of 0.7 per minute. The duration of examinations is modeled as a random variable with a uniform
distribution having lower bound 5 and upper bound 9.

The Medical-Department-1a design model

In the Medical-Department-1a information design model, instead of using the built-in generic resource
management logic, we explicitly model the resource management of doctors with the help of a counter variable
for available doctors in the form of an attribute nmrOfAvailableDoctors, and the operations isDoctorAvailable(),
allocateDoctor() and releaseDoctor(), in the MedicalDepartment class:

«rv» duration() : Decimal {U(5,10)}

«activity type»
Examination

isDoctorAvailable() : Boolean
allocateDoctor()
releaseDoctor()

nmrOfAvailableDoctors : Integer
plannedExaminations : Queue<Examination>

«object type»
MedicalDepartment

* processOwner

1

«rv» recurrence() : Decimal {Exp(0.3)}

«event type»
NewCase

*

processOwner

1

The isDoctorAvailable function simply tests if nmrOfAvailableDoctors > 0, while the procedures
allocateDoctor and releaseDoctor decrement and increment the nmrOfAvailableDoctors counter.

In addition to an information design model for defining the simulation's state structure, we also need to make
a process design model for defining the dynamics of the simulation. The following DPMN process diagram
defines two event rules:

m
d:

 M
ed

ic
al

D
ep

ar
tm

en
t

md: MedicalDepartment
[md = n.medicalDepartment]

isDocAllocated : Boolean

IF md.isDoctorAvailable()
THEN md.allocateDoctor()

isDocAllocated := true
ELSE md.plannedExaminations.enqueue(

new Examination())

n:NewCase

md: MedicalDepartment
[md = e.medicalDepartment]

nextCase: Boolean

IF md.plannedExaminations.length = 0
THEN md.releaseDoctor()

ELSE md.plannedExaminations.dequeue()
nextCase := true

e:Examination
[isDocAllocated] [nextCase]

 Chapter 1. Introduction to Object Event Modeling of Activities 8

https://sim4edu.com/oesjs/core2/Medical-Department-1a/index.html

 Activity-Based Discrete Event Simulation with OESjs-Core2

Notice that this process design model contains the entire resource management logic for (de-)allocating doctors
to (from) examinations. Since standard resource management procedures can be defined in a generic way,
this logic (and the related code) can be moved from example models to the simulator, as explained in the next
section.

The following table shows the two event rules defined by the above DPMN diagram, expressed in pseudo-code.

ON (event type) DO (event routine)

NewCase(md) @ t
with md : MedicalDepartment

newExam = new Examination(md);

IF md.isDoctorAvailable()

 md.allocateDoctor();

 SCHEDULE new ActivityStart(newExam);

ELSE

 md.plannedExaminations.enqueue(newExam);

Examination(md) @ t
with md : MedicalDepartment

IF md.plannedExaminations.length = 0

 md.releaseDoctor();

ELSE

 plannedExam = md.plannedExaminations.dequeue();

 SCHEDULE new ActivityStart(plannedExam);

The Medical-Department-1b design model

In the Medical-Department-1b information design model we make two simplifications:

1. We drop the object type MedicalDepartment; since we only need to model one medical department as
the process owner, we can leave it implicit. This is a general pattern: whenever there is only one process
owner, we can leave it implicit.

2. Since we now use the generic resource management logic that is built into OES Core 2, we do not
need to model the methods isDoctorAvailable, allocateDoctor and releaseDoctor. Instead, we define a
resource role doctor (with resource cardinality 1) for the activity type Examination.

The resulting information design model only includes two classes: the event type NewCase and the activity type
Examination, as shown on the left-hand side of the following class diagram.

«rv» duration() : Decimal {U(5,10)}

tasks : Queue<Examination>

«activity type»
Examination

«rv» recurrence() : Decimal {Exp(0.3)}

«event type»
NewCase

name : String

OES::ResourcePool

isAvailable(in card : Integer) : Boolean
allocate(in card : Integer)
release(in card : Integer)

available : Integer

OES::CountPool

name : String = doctors
available : Integer = 3

doctors : OES::CountPool

name[1] : String
card[1] : Integer
range[0..1] : String

OES::ResourceRole

* 1

name : String = doctor
card : Integer = 1
range : String

doctor : OES::ResourceRole

«instance»

resourceRole «instance»

 Chapter 1. Introduction to Object Event Modeling of Activities 9

https://sim4edu.com/oesjs/core2/Medical-Department-1b/index.html

 Activity-Based Discrete Event Simulation with OESjs-Core2

On the right-hand side bottom of this diagram, the resource role doctor and its count pool doctors, instantiating
the OES Core 2 library classes ResourceRole and CountPool (as a special type of ResourcePool), are shown.
Notice that resourceRole assigns the OES resource role doctor with resource cardinality 1 to the activity type

Examination[1], which is in turn linked to a count pool with name doctors. In OESjs-Core2, this is coded in the
file Examination.js in the following way:

class Examination extends aCTIVITY {

 constructor({id, startTime, duration}={}) {

 super({id, startTime, duration});

 }

 static duration() {return rand.uniform(5, 10);}

}

Examination.resourceRoles = {

 "doctor": {card:1}

}

The generic class-level ("static") property Examination.tasks is automatically created by the simulator.
Likewise, the count pool "doctors" is automatically created and assigned to the resource role definition map
entry Examination.resourceRoles["doctor"].

In the Medical-Department-1b process design model we make corresponding simplifications as in the
information design model above:

1. Leaving the process owner implicit, we drop the process owner rectangle MedicalDepartment.

2. Since we use the generic resource management logic that is built into OES Core 2 by means of
Resource-Dependent Activity Start arrows, we do not need any resource management code involving the
methods isDoctorAvailable, allocateDoctor and releaseDoctor in event rules. Since the event rules of
the Medical-Department-1a model have only be concerned with resource management, we can discard
them altogether.

In the resulting DPMN diagram, the event type NewCase is connected to the activity type Examination with a
Resource-Dependent Activity Scheduling arrow:

Examination

NewCase

Using a Resource-Dependent Activity Scheduling arrow from NewCase to Examination implies that upon a
NewCase event a new planned Examination activity is enqueued by the simulator, if the required resources
are not available; otherwise, a new Examination activity is scheduled to start immediately. Using this built-in
standard resource management logic relieves the simulation developer from coding the resource availability
tests and the enqueuing of a new Examination activity in a NewCase event rule.

Since in this model, NewCase events and Examination activities are handled according to the generic logic
of Activity Networks built into the OES Core 2 simulator, we do not need to model/specify any event rules.

 [1]Such a resource role assignment is expressed in the UML class diagram as a link instantiating the corresponding class-level meta-

property ActivityType.resourceRole.

 Chapter 1. Introduction to Object Event Modeling of Activities 10

 Activity-Based Discrete Event Simulation with OESjs-Core2

For having NewCase events succeeded by Examination activities, we just need to specify this event flow
relationship (in OESjs-Core2) in the following way:

NewCase.successorActivity = "Examination";

The simulator interprets this successorActivity assignment when creating follow-up events for NewCase events
by enqueuing a planned examination activity in the following way

Examination.tasks.enqueue(new Examination())

The Medical-Department-1c design model

In the Medical-Department-1c design model, the resource pool doctors is modeled as an individual resource
pool instead of a count pool. This allows making the model more realistic, for instance, by assigning an
individual work schedule to each doctor defining her availability.

Compared to the Medical-Department-1b information design model, we have to change the following:

1. We need to define an object type Doctor having a resource status attribute with the four possible values
AVAILABLE, BUSY, OUT_OF_ORDER or OUT_OF_DUTY.

2. While we keep the resourceRole link with the definition of the resource role doctor (with resource
cardinality 1), we replace the count pool linked to it with an individual resource pool.

The resulting information design model is shown in the following class diagram:

«rv» duration() : Decimal {U(5,10)}

tasks : Queue<Examination>

«activity type»
Examination

«rv» recurrence() : Decimal {Exp(0.3)}

«event type»
NewCase

name : String = doctors
range : ObjectType = Doctor
busyResources : List = []
availResources : List = []

doctors : OES::IndividualPool

name : String = doctor
card : Integer = 1
range : String = Doctor

doctor : OES::ResourceRole
resourceRole

«instance»

isAvailable(in card : Integer) : Boolean
allocate(in card : Integer)
release(in resObj : Object)

range : ObjectType
busyResources : List
availResources : List

OES::IndividualPool

name : String

OES::ResourcePool
status : HumanResourceStatusEL

«object type»Doctor AVAILABLE
BUSY
OUT_OF_ORDER
OUT_OF_DUTY

«enumeration»
OES::HumanResourceStatusEL

On the right-hand side bottom of this diagram, the resource role doctor and its individual pool doctors,
instantiating the OES Core 2 library classes ResourceRole and IndividualPool (as a special type of
ResourcePool), are shown. In OESjs-Core2, this is coded in the file Examination.js in the following way:

 Chapter 1. Introduction to Object Event Modeling of Activities 11

https://sim4edu.com/oesjs/core2/Medical-Department-1c/index.html

 Activity-Based Discrete Event Simulation with OESjs-Core2

Examination.resourceRoles = {

 "doctor": {range: Doctor, card:1}

}

The Medical-Department-1c process design model is the same as in the Medical-Department-1b process design
model above:

Examination

NewCase

1.2.2. A design model based on the extended conceptual model

In the Medical-Department-2a design model, we model two activity types: WalkToRoom activities involve a
room and are performed by a nurse, while Examination activities involve a room and are performed by a doctor.
The resource pools nurses and doctors are modeled as individual resource pools, while the resource pool rooms,
which is used by both WalkToRoom and Examination activities, is modeled as a count pool.

The resulting information design model is shown in the following class diagram:

status : HumanResourceStatusEL

«object type»
Doctor

AVAILABLE
BUSY
OUT_OF_ORDER
OUT_OF_DUTY

«enumeration»
OES::HumanResourceStatusEL

«rv» recurrence() : Decimal {Exp(0.3)}

«event type»
NewCase

«rv» duration() : Decimal {U(5,10)}

tasks : Queue<Examination>

«activity type»Examination

resourceRole

status : HumanResourceStatusEL

«object type»
Nurse

«rv» duration() : Decimal {U(0.5,2.5)}

tasks : Queue<WalkToRoom>

«activity type»
WalkToRoom

name : String = room
card : Integer = 1
range : String

room : OES::ResourceRole
name : String = rooms
available : Integer = 3

rooms : OES::CountPool

name : String = doctor
card : Integer = 1
range : String = Doctor

doctor : OES::ResourceRole

resourceRole
name : String = doctors
range : ObjectType = Doctor
busyResources : List = []
availResources : List = []

doctors : OES::IndividualPool

resourceRole

name : String = room
card : Integer = 1
range : String

room : OES::ResourceRole

name : String = nurse
card : Integer = 1
range : String = Nurse

nurse : OES::ResourceRole
resourceRole

name : String = nurses
range : ObjectType = Nurse
busyResources : List = []
availResources : List = []

nurses : OES::IndividualPool

Notice that the generic class-level ("static") properties WalkToRoom.tasks and Examination.tasks don't have to
be defined when coding the two activity types since they are automatically created by the simulator.

In the process design model, again, we leave the process owner implicit, not showing a container rectangle for
MedicalDepartment:

 Chapter 1. Introduction to Object Event Modeling of Activities 12

https://sim4edu.com/oesjs/core2/Medical-Department-2a/index.html

 Activity-Based Discrete Event Simulation with OESjs-Core2

WalkToRoom

NewCase

Examination

However, it is an option to show the performer roles with the help of corresponding Lanes:
do

ct
or

 n
ur

se

WalkToRoom

Examination

NewCase

In OESjs-Core2, the two Resource-Dependent Activity Scheduling arrows between NewCase and WalkToRoom,
as well as between WalkToRoom and Examination are coded as

NewCase.successorActivity = "WalkToRoom";

in the file NewCase.js, and as

WalkToRoom.successorActivity = "Examination";

in WalkToRoom.js.

 Chapter 1. Introduction to Object Event Modeling of Activities 13

 Activity-Based Discrete Event Simulation with OESjs-Core2

Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2

The JavaScript-based simulation framework OESjs-Core2 implements the Object Event Simulation (OES)
paradigm, allowing activity-based Discrete Event Simulation based on object-oriented modeling and event
scheduling. You can download OESjs-Core2 in the form of a ZIP archive file from the OES GitHub repo. After
extracting the archive on your local disk, you can run any of its example models or create your own model (e.g.,
by making a copy of one of the example model folders and using its code files a s starting point).

The code of an OESjs-Core2 simulation consists of (1) the OESjs-Core2 library files in the folder OESjs-
Core2, (2) general library files in the lib folder and (3) the following files to be created by the simulation
developer:

1. For each object type ObjT, a JS code file ObjT.js.

2. For each event type EvtT, a JS code file EvtT.js.

3. For each activity type ActT, a JS code file ActT.js.

4. A simulation.js file defining further parts of the simulation, such as statistics variables and the
initial state.

OESjs-Core2 supports three forms of simulations:

1. Standalone scenario simulations, which are good for getting a quick impression of a simulation model,
e.g., by checking some simple statistics.

2. Simple simulation experiments, which are defined as a set of replicated simulation scenario runs,
providing summary statistics like mean, standard deviation, minimum/maximum and confidence
intervals for each statistics variable defined in the underlying model.

3. Parameter variation experiments, for which a set of experiment parameters with value sets are defined
such that each experiment parameter corresponds to a model parameter. When an experiment is run,
each experiment parameter value combination defines an experiment scenario, which is run repeatedly,
according to the specified number or replications for collecting statistics.

OESjs-Core2 allows defining two or more simulation scenarios for a given model. While an experiment type is
defined for a given model, an experiment of that type is run on top of a specific scenario.

Using a simulation library like OESjs-Core2 means that only the model-specific logic has to be coded (in the
form of object types, event types, event routines and other functions for model-specific computations), but not
the general simulator operations (e.g., time progression and statistics) and the environment handling (e.g., user
interfaces for statistics output).

The following sections present the basic concepts of the OESjs-Core2 simulation library, and show how to
implement the models described in Chapter 1.

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 14

https://sim4edu.com/OES
https://github.com/gwagner57/oes/blob/master/OESjs-Core2.zip

 Activity-Based Discrete Event Simulation with OESjs-Core2

Attention

You can download the simulation example folders from the OES repo to your

computer, and then possibly modify their files for creating your own simulations.

Since an OESjs simulation includes a JS worker file for running the simulator in its

own thread separately from the main (user interface) thread, it cannot be run from

the local file system without changing the browser's default configuration (due to

the web security policy CORS).

For developing OESjs simulations on your computer, you should use Firefox

because its security settings can be easily configured such that it allows

loading JS worker files directly from the local file system by disabling the flag

"strict_origin_policy" specifically for file URLs:

1. Enter "about:config" in the Firefox search bar.

2. Search for "security.fileuri.strict_origin_policy".

3. Disable this policy by changing its value from true to false.

This creates only a small security risk because the important web security policy

called "CORS" is only disabled for file URLs, but not for normal URLs.

For other browsers, like Chrome, you need to install a local HTTP server and

load your simulation's index.html file from that local server, or run it via the JS

development tool WebStorm (which has a built-in local server), because the only

option for loading JS worker files from the local file system in Chrome would be

to disable the CORS policy completely (see how to disable CORS in Chrome), but

that would create a severe security risk and is therefore not recommended.

Section 2.1. Simulation Time

A simulation model has an underlying time model, which can be either discrete time, when setting

sim.model.time = "discrete";

or continuous time, when setting

sim.model.time = "continuous";

Choosing a discrete time model means that time is measured in steps (with equal durations), and all temporal
random variables used in the model need to be discrete (i.e., based on discrete probability distributions).
Choosing a continuous time model means that one has to define a simulation time granularity, as explained in
the next sub-section.

In both cases, the underlying simulation time unit can be either left unspecified (e.g., in the case of an abstract
time model), or it can be set to one of the time units "ms", "s", "min", "hour", "day", "week", "month" or "year",
as in

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 15

https://www.freecodecamp.org/news/cors-csp-web-security-concepts-for-developers/
https://windowsreport.com/browser-not-support-cross-origin/

 Activity-Based Discrete Event Simulation with OESjs-Core2

sim.model.timeUnit = "hour";

Typical examples of time models are:

1. An abstract discrete model of time where time runs in steps without any concrete meaning:

sim.model.time = "discrete";

2. A concrete discrete model of time in number of days:

sim.model.time = "discrete";

sim.model.timeUnit = "day";

3. A concrete continuous model of time in number of seconds:

sim.model.time = "continuous";

sim.model.timeUnit = "s";

2.1.1. Time Granularity

A model's time granularity is the time delay until the next moment, such that the model does not allow
considering an earlier next moment. This is captured by the simulation parameter nextMomentDeltaT used
by the simulator for scheduling immediate events with a minimal delay. When a simulation model is based
on discrete time, nextMomentDeltaT is set to 1, referring to the next time point. When a simulation model is
based on continuous time, nextMomentDeltaT is set to the default value 0.001, unless the model parameter
sim.model.nextMomentDeltaT is explicitly assigned in the simulation.js file.

2.1.2. Time Progression

An important issue in simulation is the question how the simulation time is advanced by the simulator. The
OES paradigm supports next-event time progression and fixed-increment time progression, as well as their
combination.

An OESjs-Core1 model with fixed-increment time progression has to define a suitable periodic time event type,
like EachSecond or EachDay in the form of an exogenous event type with a recurrence function returning the
value 1. Such a model can be used for

1. modeling continuous state changes (e.g., objects moving in a continuous space), or

2. making a discrete model that abstracts away from explicit events and uses only implicit periodic time
events ("ticks"), which is a popular approach in social science simulation.

Examples of discrete event simulation models with fixed-increment time progression and no explicit events are
the Schelling Segregation Model and the Susceptible-Infected-Recovered (SIR) Disease Model.

Section 2.2. Simulation Models

2.2.1. An Activity Type with a Class-Level Resource Role and a Count Pool

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 16

https://sim4edu.com/sims/6
https://sim4edu.com/sims/25/index.html

 Activity-Based Discrete Event Simulation with OESjs-Core2

Based on the conceptual model of Section 1.1, we choose the design discussed in Section 1.2 in the subsection
"The Medical-Department-1b design model" and defined by the following information design model:

«rv» duration() : Decimal {U(5,10)}

tasks : Queue<Examination>

«activity type»
Examination

«rv» recurrence() : Decimal {Exp(0.3)}

«event type»
NewCase

name : String

OES::ResourcePool

isAvailable(in card : Integer) : Boolean
allocate(in card : Integer)
release(in card : Integer)

available : Integer

OES::CountPool

name : String = doctors
available : Integer = 3

doctors : OES::CountPool

name[1] : String
card[1] : Integer
range[0..1] : String

OES::ResourceRole

* 1

name : String = doctor
card : Integer = 1
range : String

doctor : OES::ResourceRole

«instance»

resourceRole «instance»

Notice that this model

1. Does not define an object type Doctor, since the doctors of the department are not modeled as a
collection of individual persons, but as an abstract aggregate in the form of a count pool.

2. Does not link the resource role doctor to the count pool doctors because linking a resource pool to
an activity type for any of its resource roles has to be done by a process model, either implicitly or
explicitly. By default, if there is a resource pool with the same (but pluralized) name as a resource role, it
is implicitly assigned to that resource role. In general, an information design model may be the basis for
many process models, and each of them may assign a different resource pool to the same resource role of
an activity type.

The random variable recurrence for modeling the random variation of the time between new cases samples from
the exponential probability distribution with an event rate of 0.3, while the random variable for the duration
of an examination samples from the uniform probability distribution with lower bound 5 and upper bound 10
(representing minutes).

The NewCase class can be coded with OESjs-Core2 in the following way:

class NewCase extends eVENT {

 constructor({ occTime, delay}) {

 super({occTime, delay});

 }

 onEvent() {return [];}

 createNextEvent() {

 return new NewCase({delay: NewCase.recurrence()});

 }

 static recurrence() {return rand.exponential(0.3);}

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 17

 Activity-Based Discrete Event Simulation with OESjs-Core2

}

The onEvent method is empty since no event rules are needed for this simple model. Its dynamics is entirely
determined by the standard logic of resource-dependent activity scheduling built into OES Core 2.

The Examination class can be coded in the following way:

class Examination extends aCTIVITY {

 constructor({id, startTime, duration}={}) {

 super({id, startTime, duration});

 }

 static duration() {return rand.uniform(5, 10);}

}

Examination.resourceRoles = {

 "doctor": {countPoolName:"doctors", card:1}

}

The process resulting from NewCase events followed by Examination activities is modeled with a Resource-
Dependent Activity Scheduling arrow:

Examination

NewCase

In OESjs-Core2, this simple process model is coded with one line of code in the file NewCase.js:

NewCase.successorActivity = "Examination";

2.2.2. Modeling a Sequence of Two Activity Types

The following information design model of a medical department with two types of activities (discussed in) is
based on the conceptual information model discussed in :

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 18

 Activity-Based Discrete Event Simulation with OESjs-Core2

status : HumanResourceStatusEL

«object type»
Doctor

AVAILABLE
BUSY
OUT_OF_ORDER
OUT_OF_DUTY

«enumeration»
OES::HumanResourceStatusEL

«rv» recurrence() : Decimal {Exp(0.3)}

«event type»
NewCase

«rv» duration() : Decimal {U(5,10)}

tasks : Queue<Examination>

«activity type»Examination

resourceRole

status : HumanResourceStatusEL

«object type»
Nurse

«rv» duration() : Decimal {U(0.5,2.5)}

tasks : Queue<WalkToRoom>

«activity type»
WalkToRoom

name : String = room
card : Integer = 1
range : String

room : OES::ResourceRole
name : String = rooms
available : Integer = 3

rooms : OES::CountPool

name : String = doctor
card : Integer = 1
range : String = Doctor

doctor : OES::ResourceRole

resourceRole
name : String = doctors
range : ObjectType = Doctor
busyResources : List = []
availResources : List = []

doctors : OES::IndividualPool

resourceRole

name : String = room
card : Integer = 1
range : String

room : OES::ResourceRole

name : String = nurse
card : Integer = 1
range : String = Nurse

nurse : OES::ResourceRole
resourceRole

name : String = nurses
range : ObjectType = Nurse
busyResources : List = []
availResources : List = []

nurses : OES::IndividualPool

The class implementing the event type NewCase is defined as above. The class implementing the activity type
WalkToRoom is defined as follows:

class WalkToRoom extends aCTIVITY {

 constructor({id, startTime, duration}={}) {

 super({id, startTime, duration});

 }

 static duration() {return rand.uniform(0.5, 2.5);}

}

// A walk to a room requires a room and a nurse

WalkToRoom.resourceRoles = {

 "nurse": {range: Nurse, card:1},

 "room": {countPoolName:"rooms", card:1}

}

The class implementing the activity type Examination is defined as follows:

class Examination extends aCTIVITY {

 constructor({id, startTime, duration}={}) {

 super({id, startTime, duration});

 }

 static duration() {return rand.uniform(5, 10);}

}

// An examination requires a room and a doctor

Examination.resourceRoles = {

 "doctor": {range: Doctor, card:1},

 "room": {countPoolName:"rooms", card:1}

}

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 19

 Activity-Based Discrete Event Simulation with OESjs-Core2

The following process design model (discussed in) is based on the conceptual process model discussed in :

do
ct

or

 n

ur
se

WalkToRoom

Examination

NewCase

This process design model with its two Resource-Dependent Activity Scheduling arrows is implemented with
just two statements on top of the classes NewCase and WalkToRoom:

// Enqueue a new planned walk

NewCase.successorActivity = "WalkToRoom";

// Enqueue a new planned examination

WalkToRoom.successorActivity = "Examination";

You can run this Medical-Department-2a model from the project's GitHub website.

Activities with Default Durations

When an activity type is defined without defining a class-level duration function, the exponential PDF is used
as a built-in default random variable for setting the durations of activities of that type according to the following
settings:

aCTIVITY.defaultMean = 1;

aCTIVITY.defaultDuration = function () {

 return rand.exponential(1/aCTIVITY.defaultMean)

};

It is possible to overwrite these defaults, both the defaultMean and the defaultDuration function, in a
simulation.js file.

Section 2.3. Simulation Scenarios

For obtaining a complete executable simulation scenario, a simulation model has to be complemented with
simulation parameter settings and an initial system state.

In general, we may have more than one simulation scenario for a simulation model. For instance, the same
model could be used in two different scenarios with different initial states.

2.3.1. A Simulation Scenario for Medical-Department-1b

The default simulation scenario for the Medical-Department-1b model defines a duration of 1000 min per
simulation run and an initial state with a count resource pool with 3 doctors:

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 20

https://sim4edu.com/oesjs/core2/Medical-Department-2a/index.html

 Activity-Based Discrete Event Simulation with OESjs-Core2

sim.scenario.durationInSimTime = 1000;

sim.scenario.setupInitialState = function () {

 // Initialize the count pool "doctors"

 sim.resourcePools["doctors"].available = 3;

 // Schedule initial events

 sim.FEL.add(new NewCase({occTime: 1}));

}

You can run this Medical-Department-1b scenario from the project's GitHub website. An example of a run of
this scenario is shown in the following simulation log:

Table 2-1. Simulation Log

Step Time System State Future Events

1 1 av. doctors: 2
ExaminationStart@1.01,
NewCase@3.33

2 1.01 av. doctors: 2
NewCase@3.33,
ExaminationEnd@8.72

3 3.33 av. doctors: 1
ExaminationStart@3.34,
NewCase@4.59,
ExaminationEnd@8.72

4 3.34 av. doctors: 1
NewCase@4.59,
ExaminationEnd@8.72,
ExaminationEnd@12.51

5 4.59 av. doctors: 0

ExaminationStart@4.6,
NewCase@6.93,
ExaminationEnd@8.72,
ExaminationEnd@12.51

6 4.6 av. doctors: 0

NewCase@6.93,
ExaminationEnd@8.72,
ExaminationEnd@12.51,
ExaminationEnd@13.71

7 6.93 av. doctors: 0

ExaminationEnd@8.72,
NewCase@8.79,
ExaminationEnd@12.51,
ExaminationEnd@13.71

8 8.72 av. doctors: 0

ExaminationStart@8.73,
NewCase@8.79,
ExaminationEnd@12.51,
ExaminationEnd@13.71

9 8.73 av. doctors: 0

NewCase@8.79,
ExaminationEnd@12.51,
ExaminationEnd@13.71,
ExaminationEnd@16.58

10 8.79 av. doctors: 0
NewCase@9.56,
ExaminationEnd@12.51,

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 21

https://sim4edu.com/oesjs/core2/Medical-Department-1b/index.html

 Activity-Based Discrete Event Simulation with OESjs-Core2

Step Time System State Future Events

ExaminationEnd@13.71,
ExaminationEnd@16.58

11 9.56 av. doctors: 0

ExaminationEnd@12.51,
ExaminationEnd@13.71,
ExaminationEnd@16.58,
NewCase@17.88

12 12.51 av. doctors: 0

ExaminationStart@12.52,
ExaminationEnd@13.71,
ExaminationEnd@16.58,
NewCase@17.88

13 12.52 av. doctors: 0

ExaminationEnd@13.71,
ExaminationEnd@16.58,
NewCase@17.88,
ExaminationEnd@19.95

14 13.71 av. doctors: 0

ExaminationStart@13.72,
ExaminationEnd@16.58,
NewCase@17.88,
ExaminationEnd@19.95

15 13.72 av. doctors: 0

ExaminationEnd@16.58,
NewCase@17.88,
ExaminationEnd@19.95,
ExaminationEnd@22.08

16 16.58 av. doctors: 1
NewCase@17.88,
ExaminationEnd@19.95,
ExaminationEnd@22.08

17 17.88 av. doctors: 0

ExaminationStart@17.89,
NewCase@18.06,
ExaminationEnd@19.95,
ExaminationEnd@22.08

18 17.89 av. doctors: 0

NewCase@18.06,
ExaminationEnd@19.95,
ExaminationEnd@22.08,
ExaminationEnd@23.95

19 18.06 av. doctors: 0

ExaminationEnd@19.95,
ExaminationEnd@22.08,
ExaminationEnd@23.95,
NewCase@24.76

20 19.95 av. doctors: 0

ExaminationStart@19.96,
ExaminationEnd@22.08,
ExaminationEnd@23.95,
NewCase@24.76

21 19.96 av. doctors: 0
ExaminationEnd@22.08,
ExaminationEnd@23.95,

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 22

 Activity-Based Discrete Event Simulation with OESjs-Core2

Step Time System State Future Events

NewCase@24.76,
ExaminationEnd@27.37

22 22.08 av. doctors: 1
ExaminationEnd@23.95,
NewCase@24.76,
ExaminationEnd@27.37

23 23.95 av. doctors: 2
NewCase@24.76,
ExaminationEnd@27.37

24 24.76 av. doctors: 1
ExaminationStart@24.77,
ExaminationEnd@27.37,
NewCase@27.97

25 24.77 av. doctors: 1
ExaminationEnd@27.37,
NewCase@27.97,
ExaminationEnd@32.74

26 27.37 av. doctors: 2
NewCase@27.97,
ExaminationEnd@32.74

27 27.97 av. doctors: 1
ExaminationStart@27.98,
NewCase@32.5,
ExaminationEnd@32.74

28 27.98 av. doctors: 1
NewCase@32.5,
ExaminationEnd@32.74,
ExaminationEnd@36.51

29 32.5 av. doctors: 0

ExaminationStart@32.51,
NewCase@32.73,
ExaminationEnd@32.74,
ExaminationEnd@36.51

30 32.51 av. doctors: 0

NewCase@32.73,
ExaminationEnd@32.74,
ExaminationEnd@36.51,
ExaminationEnd@37.93

31 32.73 av. doctors: 0

ExaminationEnd@32.74,
NewCase@34.02,
ExaminationEnd@36.51,
ExaminationEnd@37.93

32 32.74 av. doctors: 0

ExaminationStart@32.75,
NewCase@34.02,
ExaminationEnd@36.51,
ExaminationEnd@37.93

33 32.75 av. doctors: 0

NewCase@34.02,
ExaminationEnd@36.51,
ExaminationEnd@37.93,
ExaminationEnd@39.84

34 34.02 av. doctors: 0
ExaminationEnd@36.51,
ExaminationEnd@37.93,

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 23

 Activity-Based Discrete Event Simulation with OESjs-Core2

Step Time System State Future Events

ExaminationEnd@39.84,
NewCase@40.99

35 36.51 av. doctors: 0

ExaminationStart@36.52,
ExaminationEnd@37.93,
ExaminationEnd@39.84,
NewCase@40.99

36 36.52 av. doctors: 0

ExaminationEnd@37.93,
ExaminationEnd@39.84,
NewCase@40.99,
ExaminationEnd@44.03

37 37.93 av. doctors: 1
ExaminationEnd@39.84,
NewCase@40.99,
ExaminationEnd@44.03

38 39.84 av. doctors: 2
NewCase@40.99,
ExaminationEnd@44.03

39 40.99 av. doctors: 1
ExaminationStart@41,
ExaminationEnd@44.03,
NewCase@59.51

40 41 av. doctors: 1
ExaminationEnd@44.03,
ExaminationEnd@47.52,
NewCase@59.51

41 44.03 av. doctors: 2
ExaminationEnd@47.52,
NewCase@59.51

42 47.52 av. doctors: 3 NewCase@59.51

43 59.51 av. doctors: 2
ExaminationStart@59.52,
NewCase@66.71

44 59.52 av. doctors: 2
ExaminationEnd@64.6,
NewCase@66.71

45 64.6 av. doctors: 3 NewCase@66.71

46 66.71 av. doctors: 2
ExaminationStart@66.72,
NewCase@78.2

47 66.72 av. doctors: 2
ExaminationEnd@74.77,
NewCase@78.2

48 74.77 av. doctors: 3 NewCase@78.2

49 78.2 av. doctors: 2
ExaminationStart@78.21,
NewCase@80.27

50 78.21 av. doctors: 2
NewCase@80.27,
ExaminationEnd@83.75

51 80.27 av. doctors: 1
ExaminationStart@80.28,
NewCase@80.53,
ExaminationEnd@83.75

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 24

 Activity-Based Discrete Event Simulation with OESjs-Core2

Step Time System State Future Events

52 80.28 av. doctors: 1
NewCase@80.53,
ExaminationEnd@83.75,
ExaminationEnd@89.82

53 80.53 av. doctors: 0

ExaminationStart@80.54,
NewCase@80.77,
ExaminationEnd@83.75,
ExaminationEnd@89.82

54 80.54 av. doctors: 0

NewCase@80.77,
ExaminationEnd@83.75,
ExaminationEnd@89.62,
ExaminationEnd@89.82

55 80.77 av. doctors: 0

NewCase@81.44,
ExaminationEnd@83.75,
ExaminationEnd@89.62,
ExaminationEnd@89.82

In the Medical-Department-1c model, which is a variant of Medical-Department-1b, the count pool for doctors
is replaced with an individual pool.

2.3.1. A Simulation Scenario for Medical-Department-2

The default simulation scenario for the Medical-Department-2 model defines an initial state with three doctors
in the individual pool "doctors", two nurses in the individual pool "nurses" and three rooms in the count pool
"rooms":

sim.scenario.durationInSimTime = 1000;

sim.scenario.setupInitialState = function () {

 const d1 = new Doctor({id: 1, status: oes.ResourceStatusEL.AVAILABLE}),

 d2 = new Doctor({id: 2, status: oes.ResourceStatusEL.AVAILABLE}),

 d3 = new Doctor({id: 3, status: oes.ResourceStatusEL.AVAILABLE}),

 n1 = new Nurse({id: 11, status: oes.ResourceStatusEL.AVAILABLE}),

 n2 = new Nurse({id: 12, status: oes.ResourceStatusEL.AVAILABLE});

 // Initialize the individual resource pools

 sim.resourcePools["doctors"].availResources.push(d1, d2, d3);

 sim.resourcePools["nurses"].availResources.push(n1, n2);

 // Initialize the count pools

 sim.resourcePools["rooms"].available = 3;

 // Schedule initial events

 sim.FEL.add(new NewCase({occTime: 1}));

}

You can run this Medical-Department-2a scenario from the project's GitHub website. An example of a run of
this scenario is shown in the following simulation log:

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 25

https://sim4edu.com/oesjs/core2/Medical-Department-1c/index.html
https://sim4edu.com/oesjs/core2/Medical-Department-2a/index.html

 Activity-Based Discrete Event Simulation with OESjs-Core2

Table 2-2. Simulation Log

Step Time System State Future Events

1 1

Doctor-1{ st: 1},
Doctor-2{ st: 1},
Doctor-3{ st: 1},
Nurse-11{ st: 2},
Nurse-12{ st: 1} | av.
nurses: n2, av. rooms: 2,
av. doctors: d1,d2,d3

WalkToRoomStart{n1}@1.01,
NewCase@1.85

2 1.01

Doctor-1{ st: 1},
Doctor-2{ st: 1},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WalkToRoom}},
Nurse-12{ st: 1} | av.
nurses: n2, av. rooms: 2,
av. doctors: d1,d2,d3

NewCase@1.85,
WalkToRoomEnd{n1}@2.28

3 1.85

Doctor-1{ st: 1},
Doctor-2{ st: 1},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WalkToRoom}},
Nurse-12{ st: 2} | av.
nurses: , av. rooms: 1, av.
doctors: d1,d2,d3

WalkToRoomStart{n2}@1.86,
WalkToRoomEnd{n1}@2.28,
NewCase@6.27

4 1.86

Doctor-1{ st: 1},
Doctor-2{ st: 1},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WalkToRoom}},
Nurse-12{ st: 2, act:
{WalkToRoom}} | av.
nurses: , av. rooms: 1, av.
doctors: d1,d2,d3

WalkToRoomEnd{n1}@2.28,
WalkToRoomEnd{n2}@3.99,
NewCase@6.27

5 2.28

Doctor-1{ st: 2},
Doctor-2{ st: 1},
Doctor-3{ st: 1},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WalkToRoom}} | av.
nurses: n1, av. rooms: 1,
av. doctors: d2,d3

ExaminationStart{ d1}@2.29,
WalkToRoomEnd{n2}@3.99,
NewCase@6.27

6 2.29

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 1},
Doctor-3{ st: 1},
Nurse-11{ st: 1, act:

WalkToRoomEnd{n2}@3.99,
NewCase@6.27,
ExaminationEnd{ d1, }@10.83

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 26

 Activity-Based Discrete Event Simulation with OESjs-Core2

Step Time System State Future Events

{}}, Nurse-12{ st: 2, act:
{WalkToRoom}} | av.
nurses: n1, av. rooms: 1,
av. doctors: d2,d3

7 3.99

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2},
Doctor-3{ st: 1},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 1, av. doctors: d3

ExaminationStart{ d2}@4,
NewCase@6.27,
ExaminationEnd{ d1, }@10.83

8 4

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 1, av. doctors: d3

NewCase@6.27,
ExaminationEnd{ d1}@10.83,
ExaminationEnd{ d2, }@13.28

9 6.27

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act: {}},
Nurse-12{ st: 1, act: {}} |
av. nurses: n2, av. rooms:
0, av. doctors: d3

WalkToRoomStart{n1}@6.28,
NewCase@7.19,
ExaminationEnd{ d1, }@10.83,
ExaminationEnd{ d2}@13.28

10 6.28

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WalkToRoom}},
Nurse-12{ st: 1, act: {}} |
av. nurses: n2, av. rooms:
0, av. doctors: d3

NewCase@7.19,
WalkToRoomEnd{n1}@8.77,
ExaminationEnd{ d1, }@10.83,
ExaminationEnd{ d2}@13.28

11 7.19

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WalkToRoom}},
Nurse-12{ st: 1, act: {}} |

NewCase@8.5,
WalkToRoomEnd{n1}@8.77,
ExaminationEnd{ d1, }@10.83,
ExaminationEnd{ d2}@13.28

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 27

 Activity-Based Discrete Event Simulation with OESjs-Core2

Step Time System State Future Events

av. nurses: n2, av. rooms:
0, av. doctors: d3

12 8.5

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WalkToRoom}},
Nurse-12{ st: 1, act: {}} |
av. nurses: n2, av. rooms:
0, av. doctors: d3

WalkToRoomEnd{n1}@8.77,
ExaminationEnd{ d1}@10.83,
NewCase@13.06,
ExaminationEnd{ d2}@13.28

13 8.77

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act: {}},
Nurse-12{ st: 1, act: {}} |
av. nurses: n2, av. rooms:
0, av. doctors: d3

WalkToRoomStart{n1}@8.78,
ExaminationEnd{ d1}@10.83,
NewCase@13.06,
ExaminationEnd{ d2}@13.28

14 8.78

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WalkToRoom}},
Nurse-12{ st: 1, act: {}} |
av. nurses: n2, av. rooms:
0, av. doctors: d3

WalkToRoomEnd{n1}@10.66,
ExaminationEnd{ d1}@10.83,
NewCase@13.06,
ExaminationEnd{ d2}@13.28

15 10.66

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act: {}},
Nurse-12{ st: 1, act: {}} |
av. nurses: n2, av. rooms:
0, av. doctors: d3

WalkToRoomStart{n1}@10.67,
ExaminationEnd{ d1}@10.83,
NewCase@13.06,
ExaminationEnd{ d2}@13.28

16 10.67

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WalkToRoom}},
Nurse-12{ st: 1, act: {}} |

ExaminationEnd{ d1}@10.83,
WalkToRoomEnd{n1}@12.65,
NewCase@13.06,
ExaminationEnd{ d2}@13.28

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 28

 Activity-Based Discrete Event Simulation with OESjs-Core2

Step Time System State Future Events

av. nurses: n2, av. rooms:
0, av. doctors: d3

17 10.83

Doctor-1{ st: 2, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WalkToRoom}},
Nurse-12{ st: 1, act: {}} |
av. nurses: n2, av. rooms:
0, av. doctors: d3

ExaminationStart{ d1}@10.84,
WalkToRoomEnd{n1}@12.65,
NewCase@13.06,
ExaminationEnd{ d2}@13.28

18 10.84

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 1},
Nurse-11{ st: 2, act:
{WalkToRoom}},
Nurse-12{ st: 1, act: {}} |
av. nurses: n2, av. rooms:
0, av. doctors: d3

WalkToRoomEnd{n1}@12.65,
NewCase@13.06,
ExaminationEnd{ d2, }@13.28,
ExaminationEnd{ d1}@15.87

19 12.65

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n2,n1, av.
rooms: 0, av. doctors:

ExaminationStart{ d3}@12.66,
NewCase@13.06,
ExaminationEnd{ d2}@13.28,
ExaminationEnd{ d1}@15.87

20 12.66

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n2,n1, av.
rooms: 0, av. doctors:

NewCase@13.06,
ExaminationEnd{ d2}@13.28,
ExaminationEnd{ d1, }@15.87,
ExaminationEnd{ d3}@18.38

21 13.06

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}

ExaminationEnd{ d2}@13.28,
ExaminationEnd{ d1}@15.87,
NewCase@16.21,
ExaminationEnd{ d3}@18.38

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 29

 Activity-Based Discrete Event Simulation with OESjs-Core2

Step Time System State Future Events

| av. nurses: n2,n1, av.
rooms: 0, av. doctors:

22 13.28

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{}}, Doctor-3{ st: 2,
act: {Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n2,n1, av.
rooms: 0, av. doctors:

ExaminationStart{ d2}@13.29,
ExaminationEnd{ d1}@15.87,
NewCase@16.21,
ExaminationEnd{ d3}@18.38

23 13.29

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n2,n1, av.
rooms: 0, av. doctors:

ExaminationEnd{ d1}@15.87,
NewCase@16.21,
ExaminationEnd{ d3, }@18.38,
ExaminationEnd{ d2}@22.51

24 15.87

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n2,n1, av.
rooms: 1, av. doctors: d1

NewCase@16.21,
ExaminationEnd{ d3}@18.38,
ExaminationEnd{ d2, }@22.51

25 16.21

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 2, act: {}} |
av. nurses: n1, av. rooms:
0, av. doctors: d1

WalkToRoomStart{n2}@16.22,
NewCase@17.02,
ExaminationEnd{ d3, }@18.38,
ExaminationEnd{ d2}@22.51

26 16.22

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WalkToRoom}} | av.

WalkToRoomEnd{n2}@17,
NewCase@17.02,
ExaminationEnd{ d3, }@18.38,
ExaminationEnd{ d2}@22.51

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 30

 Activity-Based Discrete Event Simulation with OESjs-Core2

Step Time System State Future Events

nurses: n1, av. rooms: 0,
av. doctors: d1

27 17

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 2, act: {}} |
av. nurses: n1, av. rooms:
0, av. doctors: d1

WalkToRoomStart{n2}@17.01,
NewCase@17.02,
ExaminationEnd{ d3, }@18.38,
ExaminationEnd{ d2}@22.51

28 17.01

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WalkToRoom}} | av.
nurses: n1, av. rooms: 0,
av. doctors: d1

NewCase@17.02,
ExaminationEnd{ d3}@18.38,
WalkToRoomEnd{n2, }@19.47,
ExaminationEnd{ d2}@22.51

29 17.02

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WalkToRoom}} | av.
nurses: n1, av. rooms: 0,
av. doctors: d1

ExaminationEnd{ d3}@18.38,
WalkToRoomEnd{n2}@19.47,
NewCase@19.67,
ExaminationEnd{ d2}@22.51

30 18.38

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act: {}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WalkToRoom}} | av.
nurses: n1, av. rooms: 0,
av. doctors: d1

ExaminationStart{ d3}@18.39,
WalkToRoomEnd{n2}@19.47,
NewCase@19.67,
ExaminationEnd{ d2}@22.51

31 18.39

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WalkToRoom}} | av.

WalkToRoomEnd{n2}@19.47,
NewCase@19.67,
ExaminationEnd{ d2, }@22.51,
ExaminationEnd{ d3}@27.41

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 31

 Activity-Based Discrete Event Simulation with OESjs-Core2

Step Time System State Future Events

nurses: n1, av. rooms: 0,
av. doctors: d1

32 19.47

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 2, act: {}} |
av. nurses: n1, av. rooms:
0, av. doctors: d1

WalkToRoomStart{n2}@19.48,
NewCase@19.67,
ExaminationEnd{ d2, }@22.51,
ExaminationEnd{ d3}@27.41

33 19.48

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WalkToRoom}} | av.
nurses: n1, av. rooms: 0,
av. doctors: d1

NewCase@19.67,
WalkToRoomEnd{n2}@20.95,
ExaminationEnd{ d2, }@22.51,
ExaminationEnd{ d3}@27.41

34 19.67

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WalkToRoom}} | av.
nurses: n1, av. rooms: 0,
av. doctors: d1

WalkToRoomEnd{n2}@20.95,
ExaminationEnd{ d2}@22.51,
ExaminationEnd{ d3}@27.41,
NewCase@28.91

35 20.95

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 2, act: {}} |
av. nurses: n1, av. rooms:
0, av. doctors: d1

WalkToRoomStart{n2}@20.96,
ExaminationEnd{ d2}@22.51,
ExaminationEnd{ d3}@27.41,
NewCase@28.91

36 20.96

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WalkToRoom}} | av.

ExaminationEnd{ d2}@22.51,
WalkToRoomEnd{n2}@23.2,
ExaminationEnd{ d3}@27.41,
NewCase@28.91

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 32

 Activity-Based Discrete Event Simulation with OESjs-Core2

Step Time System State Future Events

nurses: n1, av. rooms: 0,
av. doctors: d1

37 22.51

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {}}, Doctor-3{ st:
2, act: {Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 2, act:
{WalkToRoom}} | av.
nurses: n1, av. rooms: 0,
av. doctors: d1

ExaminationStart{ d2}@22.52,
WalkToRoomEnd{n2}@23.2,
ExaminationEnd{ d3}@27.41,
NewCase@28.91

38 22.52

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act:
{}}, Nurse-12{ st: 2, act:
{WalkToRoom}} | av.
nurses: n1, av. rooms: 0,
av. doctors: d1

WalkToRoomEnd{n2}@23.2,
ExaminationEnd{ d3}@27.41,
NewCase@28.91,
ExaminationEnd{ d2}@30.15

39 23.2

Doctor-1{ st: 2, act:
{}}, Doctor-2{ st: 2,
act: {Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 0, av. doctors:

ExaminationStart{ d1}@23.21,
ExaminationEnd{ d3}@27.41,
NewCase@28.91,
ExaminationEnd{ d2}@30.15

40 23.21

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 0, av. doctors:

ExaminationEnd{ d3}@27.41,
NewCase@28.91,
ExaminationEnd{ d2, }@30.15,
ExaminationEnd{ d1}@31.35

41 27.41

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act: {}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}

ExaminationStart{ d3}@27.42,
NewCase@28.91,
ExaminationEnd{ d2}@30.15,
ExaminationEnd{ d1}@31.35

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 33

 Activity-Based Discrete Event Simulation with OESjs-Core2

Step Time System State Future Events

| av. nurses: n1,n2, av.
rooms: 0, av. doctors:

42 27.42

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 0, av. doctors:

NewCase@28.91,
ExaminationEnd{ d2}@30.15,
ExaminationEnd{ d1, }@31.35,
ExaminationEnd{ d3}@33.7

43 28.91

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 2, act:
{Examination}},
Doctor-3{ st: 2, act:
{Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 0, av. doctors:

ExaminationEnd{ d2}@30.15,
ExaminationEnd{ d1}@31.35,
ExaminationEnd{ d3}@33.7,
NewCase@34.09

44 30.15

Doctor-1{ st: 2, act:
{Examination}},
Doctor-2{ st: 1, act:
{}}, Doctor-3{ st: 2,
act: {Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 1, av. doctors: d2

ExaminationEnd{ d1}@31.35,
ExaminationEnd{ d3}@33.7,
NewCase@34.09

45 31.35

Doctor-1{ st: 1, act:
{}}, Doctor-2{ st: 1,
act: {}}, Doctor-3{ st:
2, act: {Examination}},
Nurse-11{ st: 1, act: {}},
Nurse-12{ st: 1, act: {}}
| av. nurses: n1,n2, av.
rooms: 2, av. doctors:
d2,d1

ExaminationEnd{ d3}@33.7,
NewCase@34.09

Section 2.4. Statistics

In activity-based Discrete Event Simulation, a simulator can automatically collect the following statistics per
activity type and simulation run:

1. Throughput quantities: (a) number of enqueued activities, (b) number of started activities (= number of
dequeued activities), and (c) number of completed activities.

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 34

 Activity-Based Discrete Event Simulation with OESjs-Core2

2. Queue length statistics: maximum queue length, average queue length, etc.

3. Waiting time statistics: maximum waiting time, average waiting time, etc.

4. Cycle time statistics: maximum cycle time, average cycle time, etc.

5. Resource utilization per resource object.

For instance, after running the Medical-Department-2 scenario , the following statistics results are shown per
activity type:

Table 2-3. Statistics

Per activity type

WalkToRoom

{"queueLength":{"max":1}, "resUtil":
{"11":0.17,"12":0.13,"rooms":0.1}, "waitingTime":
{"max":0.78}, "cycleTime":{"max":3.07},
"enqueuedActivities":22, "dequeuedActivities":21,
"startedActivities":21, "completedActivities":20}

Examination

{"queueLength":{"max":2}, "resUtil":
{"1":0.38,"2":0.4,"3":0.44,"rooms":0.4},
"waitingTime":{"max":1.99}, "cycleTime":
{"max":10.16}, "enqueuedActivities":20,
"dequeuedActivities":20, "startedActivities":20,
"completedActivities":18}

Section 2.5. Simulation Experiments

There are different types of simulation experiments. In a simple experiment, a simulation scenario is run
repeatedly by defining a number of replications (iterations) for being able to compute average statistics.

In a parameter variation experiment, several variants of a simulation scenario (called experiment scenarios), are
defined by defining value sets for certain model parameters (the experiment parameters), such that a parameter
variation experiment run consists of a set of experiment scenario runs, one for each combination of parameter
values.

An experiment type is defined for a given simulation model and an experiment of that type is run on top of a
given simulation scenario for that model.

When running an experiment, the resulting statistics data are stored in a database, which allows looking them up
later on or exporting them to data analysis tools (such as Microsoft Excel or RStudio)

2.6.1. Simple Experiments

A simple experiment type is defined with a sim.experimentType record on top of a model by defining (1)
the number of replications and (2) possibly a list of seed values, one for each replication. The following code
shows an example of a simple experiment type definition:

1

2

3

4

sim.experimentType = {

 title: "Simple Experiment with 10 replications, each running for 1000 time units (days)",

 nmrOfReplications: 10,

 seeds: [123, 234, 345, 456, 567, 678, 789, 890, 901, 1012]

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 35

https://sim4edu.com/oesjs/core2/Medical-Department-2/index.html

 Activity-Based Discrete Event Simulation with OESjs-Core2

5 };

Running this simple experiment means running the underlying scenario 10 times, each time with another
random seed, as specified by the list of seeds. The resulting statistics are composed of the user-defined statistics
and the generic statistics (per activity type) for each replication complemented with a summary statistics listing
averages, standard deviations, min/max values and confidence intervals.

When no seeds are defined, the experiment is run with implicit random seeds using JavaScript's built-in random
number generator, which implies that experiment runs are not reproducible.

The following table shows the experiment results of a simple experiment defined for the Medical-
Department-1c model.

Table 2-4. Experiment Results

Statistics per activity type

ExaminationReplication

enqu start compl qLen wTime cTime

1 284 283 282 5 12.36 20.06

2 314 314 314 6 13.28 22.66

3 297 296 294 8 20.77 29.25

4 298 297 296 8 15.28 22.66

5 296 295 292 5 14.44 21.92

6 318 318 316 16 40.64 50.23

7 299 299 298 8 18.21 25.75

8 334 327 325 12 30.8 40.35

9 296 295 292 7 16.82 25.79

10 302 301 299 6 13.12 22.1

Average 303.8 302.5 300.8 8.1 19.57 28.08

Std.dev. 14.29 13.13 13.25 3.45 9.18 9.72

Minimum 284 283 282 5 12.36 20.06

Maximum 334 327 325 16 40.64 50.23

CI Lower 294.8 294.6 292.7 5.9 13.67 21.51

CI Upper 311.5 309.7 308.2 9.9 24.25 32.99

2.6.2. Parameter Variation Experiments

A parameter variation experiment is defined with (1) a number of replications, (2) a list of seed values (one for
each replication), and (3) one or more experiment parameters.

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 36

https://sim4edu.com/oesjs/core2/Medical-Department-1c/index.html
https://sim4edu.com/oesjs/core2/Medical-Department-1c/index.html

 Activity-Based Discrete Event Simulation with OESjs-Core2

An experiment parameter must have the same name as the model parameter to which it refers. It defines a set of
values for this model variable, either using a values field or a combination of a startValue and endValue
field (and stepSize for a non-default increment value) as in the following example.

The following code shows an example of a parameter variation experiment definition (on top of the Inventory-
Management simulation model):

1

2

3

4

5

6

7

8

9

10

11

sim.experimentTypes[1] = {

 id: 1,

 title: "Parameter variation experiment for exploring reorderInterval and targetInventory",

 nmrOfReplications: 10,

 seeds: [123, 234, 345, 456, 567, 678, 789, 890, 901, 1012],

 parameterDefs: [

 {name:"reviewPolicy", values:["periodic"]},

 {name:"reorderInterval", values:[2,3,4]},

 {name:"targetInventory", startValue:80, endValue:100, stepSize:10},

]

};

Notice that this experiment definition defines 9 experiment scenarios resulting from the combinations of the
values 2/3/4 and 80/90/100 for the parameters reorderInterval and targetInventory. Running this parameter
variation experiment means running each of the 9 experiment scenarios 10 times (each time with another
random seed, as specified by the list of seeds). The resulting statistics, as shown in the following table, is
computed by averaging all statistics variables defined for the given model.

Experiment Results

StatisticsExperiment
scenario

Parameter values
nmrOfStockOuts lostSales serviceLevel

0 periodic,2,80 21.8 180.7 97.82

1 periodic,2,90 7.4 55.9 99.26

2 periodic,2,100 2.1 15.8 99.79

3 periodic,3,80 86.6 855.6 91.34

4 periodic,3,90 40.6 377.5 95.94

5 periodic,3,100 16.3 139.8 98.37

6 periodic,4,80 171.5 2067.5 82.85

7 periodic,4,90 110.6 1238.3 88.94

8 periodic,4,100 63.8 661.4 93.62

2.6.1. Storage and Export of Experiment Results

In OESjs-Core1, an experiment's output statistics data is stored in a browser-managed database using
JavaScript's IndexedDB technology. The name of this database is the same as the name of the simulation model.
It can be inspected with the help of the browser's developer tools, which are typically activated with the key
combination [Shift]+[Ctrl]+[I]. For instance, in Google's Chrome browser, one has to go to Application/Storage/
IndexedDB.

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 37

https://sim4edu.com/oesjs/core1/Inventory-Management/index.html
https://sim4edu.com/oesjs/core1/Inventory-Management/index.html

 Activity-Based Discrete Event Simulation with OESjs-Core2

The experiment statistics database consists of three tables containing data about (1) experiment runs, (2)
experiment scenarios, and (3) experiment scenario runs, which can be exported to a CSV file.

 Chapter 2. Activity-Based Discrete Event Simulation with OESjs-Core2 38

 Activity-Based Discrete Event Simulation with OESjs-Core2

Chapter 3. Special Issues in Activity-Based Modeling

Section 3.1. Waiting Timeouts

In certain cases, enqueued activities may have a waiting timeout, which means that such an enqueued activity
will not be started, but removed from the queue, if its waiting time is longer than its timeout. This mechanism
can be used for modeling the behavior of humans loosing patience in a queue called reneging in queuing theory.
For instance, in the following DPMN diagram, the activity TakeOrder has a waiting timeout:

In OESjs, this can be coded by defining a class-level ("static") function waitingTimeout in a resource-
constrained activity class, as shown in the following example. Typically, the timeout (or maximum waiting
time) provided by such a function is sampled from a probability distribution function.

class TakeOrder extends aCTIVITY {

 constructor({id, startTime, duration}={}) {

 super({id, startTime, duration});

 }

 static duration() {

 return rand.uniform(1, 4);

 }

 static waitingTimeout() {

 return rand.uniformInt(3, 6);

 }

}

Section 3.2. Admissible Resources

When activities admit using more resources than required, this means they can be started as soon as the required
number of resources are available, but they can also be started with a greater number of resources, typically
implying a faster performance. This is illustrated in scenario 2 of the model Load-Haul-Dump-1, where two
wheel loaders, instead of just one, can be allocated for performing a Load activity.

This is specified by the resource cardinality constraint 1..2 in the OE class model below for the
Load-WheelLoader association at the WheelLoader side. The meaning of this resource cardinality constraint is
that the activity type Load requires at least one wheel loader and allows up to two wheel loaders to be allocated
for a Load activity.

 Chapter 3. Special Issues in Activity-Based Modeling 39

https://sim4edu.com/oesjs/core2/load-haul-dump-1/

 Activity-Based Discrete Event Simulation with OESjs-Core2

Figure 3-1. An OE class design model for the Load-Haul-Dump system.

status : ResourceStatusEL
capacity : Integer = 15

«object type»
Truck

status : ResourceStatusEL

«object type»
WheelLoader

quantity : Integer

«event type»
HaulRequest

«rv» duration() : Decimal {Tri(30,50,40)}

«activity type»
GoToLoadingSite

«rr»1

*

«rv» duration() : Decimal {U(10,20)}

«activity type»
Load *

«rv» duration() : Decimal {Tri(40,60,55)}

«activity type»
Haul

*

«rr»1..2

«rv» duration() : Decimal {Tri(5,25,15)}

«activity type»
Dump *

«rv» duration() : Decimal {Tri(30,50,40)}

«activity type»
GoBackToLoadingSite

*

«rv» duration() : Decimal {Tri(30,50,40)}

«activity type»
GoHome *

AVAILABLE
BUSY
OUT_OF_ORDER

«enumeration»
OES::ResourceStatusEL

Section 3.3. Organizational Positions and Resource Pools

Since a business process happens in the context of an organization (as its owner), it is natural to consider the
concept of organizational positions.

Any performer role of an activity type has a performer type as its range. For instance, in the following OE
class design model, the (implicitly named) performer role orderTaker of the activity type TakeOrder has the
performer type OrderTaker as its range. Likewise the object type PizzaMaker is a performer type.

Each performer type corresponds to an organizational position. For instance, in the following OE class model,
both OrderTaker and PizzaMaker are organizational positions, for which an organization hires a number of
human resources, forming corresponding resource pools (called orderTakers and pizzaMakers). These resource
pools correspond to the direct populations of the two organizational positions.

status : ResourceStatusEL

«object type»
OrderTaker

status : ResourceStatusEL

«object type»
PizzaMaker

«rv» duration() : Decimal {U(1,4)}

«activity type»
TakeOrder

«rr»1

«rv» duration() : Decimal {Tri(3,4,6)}

«activity type»
MakePizza

«rr»

20..1

0..1

«ar»

 Chapter 3. Special Issues in Activity-Based Modeling 40

 Activity-Based Discrete Event Simulation with OESjs-Core2

An organizational position may subsume more than one performer role. In the model above, the organizational
position PizzaMaker is an alternative resource subtype of the organizational position OrderTaker, as indicated
by the generalization arrow of category

Resource Pools Assigned to Multiple Activity Types

When a resource pool represents an organizational position charged with playing n performer roles, it is used by
all n corresponding activity types.

Section 3.4. Alternate Resource Pools

Certain activities allow alternative resources, when no standard resources are available. For instance, in a pizza
service company, when no order taker is available, and a new order call comes in, an available pizza baker can
take the order. Or in a hospital, where nurses guide patients to an examination room, when no nurse is available,
a receptionist can guide a patient to an examination room.

The general conceptual pattern is that for certain types of activities A (like GuideToRoom), a resource role r
(like guide) may be played not only by instances of its direct resource type R (like Guide), but also by instances
of an alternative resource type R' (like ExaminationAssistant) or an organizational position P (like Nurse), if
they are a subtypes of R (Guide).

When the resource type R is not abstract, then its instances are the preferred resources of activities of type A,
and its (possibly preference-rank-annotated) «ar» subtypes specify types of alternative resources.

Preferred and Alternate Resource Pools

Resource roles, resource types, organizational positions and resource pools are defined in an OE class design
model. Each resource role has a resource type or an organizational position as its range and an assigned resource
pool .

By default, for any non-abstract resource type R and for any organizational position P assigned as the range of a
resource role r, an OE simulator can create a resource pool with the same (yet pluralized) name, pooling objects
instantiating R or P, and assign it to r as the preferred resource pool.

Section 3.5. Task Priorities

Whenever an activity of type A1 ends and there is still another A1 task in the queue, the activity's resources
would be re-used for the next A1 task unless there is another task (say, of type A2) with higher priority waiting
for one of the resources (r1). In that case, r1 is allocated to that task, and all other resources are allocated to the
next A1 task, which still has to wait for r1 becoming available again.

For example, in a pizza service, where incoming orders can be taken by pizza makers, and TakeOrder tasks
have a higher priority than MakePizza tasks, when a MakePizza activity performed by a pizza maker in an oven
ends while there is still another MakePizza task in the queue and there is also a TakeOrder task in the queue, the
pizza maker is allocated to the TakeOrder task and the oven is allocated to the next MakePizza task, which has
to wait for a pizza maker becoming available.

Algorithmically: Whenever an activity a1 of type A1 ends, collect all pairs <r, t> such that r is a resource used
by a1 and t is the next task of an activity type A from the dependent activity types DAT of pool(r) with the
highest priority among all DAT with task priorities higher than A1. For all these pairs <r, t>, allocate r to t.
Allocate the remaining resources of a1 to the next A1 task, if there is any, otherwise release them.

 Chapter 3. Special Issues in Activity-Based Modeling 41

 Activity-Based Discrete Event Simulation with OESjs-Core2

Section 3.6. Task Preemption

 Chapter 3. Special Issues in Activity-Based Modeling 42

 Activity-Based Discrete Event Simulation with OESjs-Core2

Appendix A. Further Example Models

Section A.1. Make and Deliver Pizza

Image by monkik

A pizza service company takes phone orders for making and delivering pizzas, with the help of order takers,
pizza makers, ovens and a crew of pizza delivery scooter drivers. From time to time the order takers cannot cope
with the number of incoming calls, and then customers grow impatient and hang up the phone without placing
an order.

For getting a quick impression, you can run this model from the Sim4edu website, or inspect its OESjs code.

Since there is a high number of lost orders due to long waiting times in the first model, assigning different
responsibilities to organizational roles for allowing a more flexible use of human resources is considered in a
variant of the first model.

Note

Our Make-and-Deliver-Pizza modeling problem is based on the chapter "Example

Model 3: Pizzeria operation" in the book The Art of Process-Centric Modeling with

AnyLogic by Arash Mahdavi.

 Conceptual Model

A pizza service company has resource pools for order takers, pizza makers, pizza ovens, delivery staff and
scooters. While take order activities are performed by an order taker, make pizza activities require both an oven
and a pizza maker. Finally, deliver pizza activities require a delivery staff member and a scooter.

 Conceptual Information Model

The potentially relevant object types are:

1. pizza service company,

2. customers,

3. orders,

 Appendix A. Further Example Models 43

https://www.flaticon.com/authors/monkik
https://sim4edu.com/oesjs/core2/Make-and-Deliver-Pizza-AN-1/
https://github.com/gwagner57/oes/tree/master/JavaScript/Core2/Load-Haul-Dump-1
https://www.anylogic.com/resources/books/the-art-of-process-centric-modeling-with-anylogic/
https://www.anylogic.com/resources/books/the-art-of-process-centric-modeling-with-anylogic/

 Activity-Based Discrete Event Simulation with OESjs-Core2

4. pizzas,

5. order takers,

6. pizza makers,

7. pizza ovens

8. delivery scooter drivers,

9. scooters.

Potentially relevant types of events and activities are:

1. pizza ordering calls coming in from customers,

2. order taking (an activity performed by order takers),

3. customers hanging up the phone when having to wait for too long,

4. pizza making (performed by pizza makers using ovens),

5. pizza delivery (performed by delivery staff using scooters).

Object, event and activity types, together with their participation associations, can be visually described in a
conceptual information model in the form of a special kind of UML class diagram, called Object Event (OE)
class diagram, as shown below.

«object type»
order takers

«object type»
pizza makers

«object type»
pizzeria

ordered items

«event type»
order calls

1

*

1

«rp»

*

1

«rp»

*

«activity type»
take order

«rr»

1

*

«activity type»
make pizza

«rr»2
*

«activity type»
deliver pizza

«rr»

1

*

«object type»
customers

«object type»
delivery scooter drivers

1

«rp»*

1 *

«object type»
scooters

1

«rp»

*

«rr»

1
*

«object type»
ovens

1

«rp»

*

«rr»

1
*

 Appendix A. Further Example Models 44

 Activity-Based Discrete Event Simulation with OESjs-Core2

The association end annotations «rr» and «rp» denote resource roles and resource pools. For instance, the
activity type make pizza has two resource roles, pizza makers and oven. A pizza service company has resource
pools for order takers, pizza makers, ovens, delivery scooter drivers and scooters.

Resource roles have resource cardinality constraints. For instance, a make pizza activity requires 2 pizza makers
and 1 oven.

A conceptual OE class diagram like the one above, describes resource roles (like oven), resource role types (like
ovens) and resource cardinality constraints (like "exactly 1") for all types of activities.

An organization defines organizational positions, which are filled by human resources. Each organizational
position is characterized by a set of human resource roles to be played by position holders. In the Pizza Service
organization, there are three positions: order takers, pizza makers and delivery scooter drivers.

Attention

Strictly speaking, order phone calls are instantaneous (zero duration) events while

a take order activity is an event with a non-zero duration. For simplicity, though,

we'll often say "events" instead of "instantaneous events" or "objects, events and

activities" instead of "objects, instantaneous events and activities".

 Conceptual Process Model

The following BPMN diagram shows a conceptual process model of the Make-and-Deliver-Pizza business
process, with three swimlanes for the three performers of the process:

pizza service

delivery scooter drivers

deliver pizza

scooter

order takers

take order

lost order

order calls

pizza makers

make pizza

oven

Notice the BPMN Boundary Timeout Event circle attached to the take order activity representing timeout
events that cancel the activity. They are supposed to model the reneging behavior of waiting customers loosing
their patience and hanging up the phone without placing an order. However, BPMN does not allow restricting
such a timeout mechanism to the waiting phase of a planned activity, that is the time span during which the
planned activity has been enqueued, but not yet started. Rather, it applies to the entire cycle time of take order
activities, which means that also started activities, where the order taker is already listening to the customer,
may be canceled due to reneging.

 Appendix A. Further Example Models 45

 Activity-Based Discrete Event Simulation with OESjs-Core2

While BPMN allows modeling the performers of activities with swimlanes, it does not support modeling other
types of resource objects. As a workaround, we have included the resource objects ovens and scooters in the
form of BPMN Data Objects.

The third, and most severe, issue of the BPMN model is its uniform (semantically overloaded) use of "sequence
flow" arrows for sequencing events and activities. While in the case of all three activities, incoming "sequence
flow" arrows do not mean that an activity is started, but rather that a new planned activity is enqueued (and
only started when all required resources become available), in the case of the event lost order, the incoming
"sequence flow" arrow means that a new event is scheduled to occur immediately.

These three issues of BPMN have been solved in DPMN, where resource-dependent activity scheduling (RDAS)
arrows are distinguished from event scheduling arrows, as shown in the following DPMN process diagram:

pizza makers [2]order takers delivery scooter drivers

take order make pizza deliver pizza

order calls

lost orders ovens

1

scooters

1

pizza service

Notice how the timeout event circle (with a clock icon) is attached to the three bars of the RDAS arrow
representing the queue of planned order taking activities waiting for the availability of an order taker. This
implies that the timeout applies to the waiting phase only, and not to the entire order taking activity.

A conceptual DPMN process diagram does normally not include any element representing a resource pool. Yet,
it may display the performer roles of activity types, like order taker and pizza maker in the diagram above. It is
assumed that for any organizational position described in the underlying OE class model, the organization under
consideration has a corresponding resource pool.

 Simulation Design

In our simulation design, we make the following simplifications. We consider only one particular pizza service
company, which does not have to be modeled as an explicit object. Also, we abstract away from individual
customers, orders and pizzas. And we merge the resource roles delivery scooter driver and scooter, keeping
only scooters as resources of deliver pizza activities.

We consider a scenario with two order takers, ten pizza makers, five ovens and 20 scooters.

 Information Design Model

An information design model, in the form of an OE class diagram as shown below, is derived from a conceptual
information model by

1. Abstracting away from items that are not design-relevant.

 Appendix A. Further Example Models 46

 Activity-Based Discrete Event Simulation with OESjs-Core2

2. Adding properties, functions and methods to object, event and activity classes. In particular, a status
attribute is added to all resource object types, such as OrderTaker and Oven, and a class-level duration
function is added to all activity classes.

status : ResourceStatusEL

«object type»
OrderTaker

status : ResourceStatusEL

«object type»
PizzaMaker

«rv» recurrence() : Decimal {Exp}

«exogenous event type»
OrderCall

«rv» duration() : Decimal {U(1,4)}
«rv» waitingTimeout() : Decimal {DU(3,6)}

«activity type»
TakeOrder «rr»1

«rv» duration() : Decimal {Tri(3,4,6)}

«activity type»
MakePizza «rr»2

0..1

«rv» duration() : Decimal {Tri(10,15,30)}

«activity type»
DeliverPizza

status : ResourceStatusEL

«object type»
Scooter

«rr»

10..1

status : ResourceStatusEL

«object type»
Oven

«rr»

1

0..1

{recurrence rates over 5 hours:
[1/6, 1.5, 2/3, 1/6, 1/12]} AVAILABLE

BUSY
OUT_OF_ORDER

«enumeration»
OES::ResourceStatusEL

0..1

Figure A-1. An information design model defining object, event and activity types.

Notice how functions representing random variables, like the duration function of all activity types, are
marked with the keyword (or UML 'stereotype') «rv» standing for "random variable". These random variable
functions sample from a probability distribution function (PDF), which is symbolically indicated with
expressions like Tri(30,40,50) standing for the triangular PDF with lower and upper bounds 30 and 50 and a
median of 40, or DU(1,4) standing for the discrete uniform PDF with lower and upper bounds 3 and 6.

In the case of the event type OrderCall, the random variable function recurrence samples from an exponential
PDF with five different event rates given for the five consecutive hours during which the pizza service operates.

The activity type TakeOrder is associated with the object type OrderTaker via the implicit resource role
orderTaker (with a resource cardinality constraint of "exactly 1"), indicated with the association end stereotype
«rr» standing for "resource role". A resource role assigns resource objects to activities.

Likewise, MakePizza is associated with PizzaMaker and Oven via the (implicitly named) resource roles
pizzaMakers, having a resource cardinality constraint of "exactly 2", and oven, having a resource cardinality
constraint of "exactly 1".

An OE class design diagram like the one above, defines resource roles (like pizzaMakers), resource role types
(like PizzaMaker) and resource cardinality constraints (like "exactly 2") for all types of activities. Normally,
in an OE simulation there is a one-to-one correspondence between resource role types and resource pools. By
convention, a resource pool has the same name as the corresponding resource role type, yet pluralized and
starting with a lowercase character. For instance, the name of the resource pool for PizzaMaker is pizzaMakers.

 Appendix A. Further Example Models 47

 Activity-Based Discrete Event Simulation with OESjs-Core2

Notice that OrderCall events are exogenous, having a recurrence function defined case-wise for each of the five
hours per day operation of the pizza service company (in the attached invariant box).

For implementing the waiting timeout event defined in the process model, the activity type TakeOrder has a
class-level waitingTimeout function implementing a random variable with PDF U(3,6).

 Process Design Model

A process design model, in the form of a DPMN process diagram as shown below, is derived from a conceptual
process model by abstracting away from items that are not design-relevant and possibly adding certain
computational details.

A DPMN process design model (like the one shown in Figure A-2) essentially defines the admissible sequences
of events and activities together with their dependencies and effects on objects, while its underlying OE class
design model (like the one shown in Figure A-1) defines the types of objects, events and activities, together
with the participation of objects in events and activities, including the resource roles of activities, as well as
resource cardinality constraints, parallel participation constraints, alternative resources, and task priorities.

TakeOrder MakePizza DeliverPizza

OrderCall

LostOrder

Figure A-2. A process design for the Make-and-Deliver-Pizza business process

It is an option, though, to enrich a DPMN process design model by displaying more computational details,
especially the recurrence of exogenous events, the duration of activities and the most important resource
management features defined in the underlying OE class design model, such as resource roles (in particular,
performer roles can be displayed in the form of Lanes) and resource cardinality constraints. The following
model shows an enriched version of Figure A-2:

:ScooterDriverpizzaMakers[2] : PizzaMaker:OrderTaker

wtmout=DU(3,6)
duration=U(1,4)

:TakeOrder

duration=Tri(3,4,6)

:MakePizza

duration=Tri(10,15,30)

:DeliverPizza

:OrderCall

:LostOrder
:Oven

1

:Scooter

1

{arrivals/minute over 5 hours =
[1/6, 1.5, 2/3, 1/6, 1/12]}

Figure A-3. An enriched process design model

Such an enriched DPMN process design model includes all computational details needed for an implementation
without a separate explicit OE class design model. In fact, such a process model implicitly defines a

 Appendix A. Further Example Models 48

 Activity-Based Discrete Event Simulation with OESjs-Core2

corresponding class model. For instance, the enriched DPMN model of Figure A-3 implicitly defines the OE
class model of Figure A-1 above.

The notation for defining performer roles in Lanes consists of a performer role name (such as pizzaMakers) and
and an object type name (such as PizzaMaker) denoting its range, separated by a colon. When the performer
role name is appended by a multiplicity expression in brackets, as in pizzaMakers[2], this denotes a resource
cardinality constraint (stating that exactly 2 pizzaMakers are required). When only a performer type prefixed
with a colon (such as :OrderTaker) is provided, this means that the implicit performer role name is obtained by
lowercasing the performer type name (as in orderTaker:OrderTaker).

The notation for defining a non-performer resource role, such as oven:Oven, consists of a named object
rectangle, such as the :Oven rectangle in Figure A-3, attached to an activity rectangle by means of a connection
line with a small filled square representing a resource link, such as the line between the MakePizza activity
rectangle and the :Oven object rectangle in Figure A-3.

Notice that the model of Figure A-3 does not include any element representing a resource pool. It is assumed
that for any organizational position described in the underlying OE class model, the organization under
consideration has a corresponding resource pool. By default, each resource role of an activity type is associated
with a resource pool having the same (yet pluralized) name, such that its resource objects are instances of a
corresponding resource role type, which is an organizational position in the case of human resources.

For instance, for the MakePizza activity a pool ovens is assigned to its resource role oven by default. The
members of the pool ovens are instances of the (resource) object type Oven. Likewise, a pool pizzaMakers
is assigned to the MakePizza resource role pizzaMaker. The members of this pool are instances of the
organizational position PizzaMaker. These default pool assignments are normally not shown in a DPMN
diagram, but an OE simulator takes care of them.

Combined with its underlying OE class design model, a DPMN process design model provides a
computationally complete specification of a simulation model that can be directly turned into implementations.

 Model Variant: Orders May Also Be Taken by Pizza Makers

For decreasing the number of lost orders due to long waiting times, it is advisable to charge pizza makers with
taking orders whenever no order taker is available. In resource management terminology, the organizational
position pizza maker is redefined by adding the performer role order taker to its portfolio of organizational
roles.

In an OE class diagram, this can be expressed by adding a subtyping arrow from pizza makers to order takers
categorized as an alternative resource subtyping arrow with the stereotype «ar», as shown in the following
diagram:

 Appendix A. Further Example Models 49

 Activity-Based Discrete Event Simulation with OESjs-Core2

status : ResourceStatusEL

«object type»
OrderTaker

status : ResourceStatusEL

«object type»
PizzaMaker

«rv» duration() : Decimal {U(1,4)}

«activity type»
TakeOrder

«rr»1

«rv» duration() : Decimal {Tri(3,4,6)}

«activity type»
MakePizza

«rr»

20..1

0..1

«ar»

The DPMN process model is not affected by this change.

Section A.1.1. Implementation with OESjs

The JavaScript-based simulator OESjs-Core2 implements the Object Event Simulation (OES) paradigm, and,
consequently, allows a straight-forward coding of OE class models and DPMN process models.

Implementing the Information Design Model

For implementing the OE class design model with OESjs-Core2, we have to code all object types, event types
and activity types specified in the model in the form of JavaScript classes extending the respective OESjs
framework classes oBJECT, eVENT and aCTIVITY. We start with the object type OrderTaker shown in the
following diagram:

status : ResourceStatusEL

«object type»
OrderTaker

AVAILABLE
BUSY
OUT_OF_ORDER

«enumeration»
OES::ResourceStatusEL

The OrderTaker object class can be coded in the following way:

class OrderTaker extends oBJECT {

 constructor({ id, name, status}) {

 super(id, name);

 this.status = status;

 }

}

 Appendix A. Further Example Models 50

 Activity-Based Discrete Event Simulation with OESjs-Core2

All object classes inherit an id attribute and a name attribute from the pre-defined OES foundation class
oBJECT. Since order takers are resource objects, we need to define a status property having the pre-defined
enumeration data type ResourceStatusEL as its range.

The other object classes (PizzaMaker, Oven and Scooter) are coded in the same way.

We next show how to code the event type OrderCall depicted in the following diagram:

«rv» recurrence() : Decimal {Exp}

«exogenous event type»
OrderCall

{recurrence rates over 5 hours:
[1/6, 1.5, 2/3, 1/6, 1/12]}

The OrderCall event class is coded in the following way:

class OrderCall extends eVENT {

 constructor({ occTime, delay}) {

 super({occTime, delay});

 }

 createNextEvent() {

 return new OrderCall({delay: OrderCall.recurrence()});

 }

 static recurrence() {

 var hour = Math.floor(sim.time / 60);

 return rand.exponential(OrderCall.arrivalRates[hour]);

 }

}

// arrival rates per minute (for a daily operation for 5 hours)

OrderCall.arrivalRates = [1/6, 1/0.66, 1/1.5, 1/6, 1/12];

All event classes inherit an occTime attribute and a delay attribute from the pre-defined OES foundation class
eVENT. Any event in OES can be created either with a value for the attribute occTime (standing for occurrence
time) or with a value for the attribute delay. In the latter case, the event's occurrence time is automatically
derived by adding the value of delay to the current simulation time.

Notice how the time-varying recurrence rates (representing order arrival rates) are implemented in the
recurrence function: by first computing the current hour, which is then used as an index for accessing the
corresponding element of the OrderCall.arrivalRates array.

Finally, we show how to code the activity type TakeOrder depicted in the following diagram:

 Appendix A. Further Example Models 51

 Activity-Based Discrete Event Simulation with OESjs-Core2

status : ResourceStatusEL

«object type»
OrderTaker

«rv» duration() : Decimal {U(1,4)}
«rv» waitingTimeout() : Decimal {DU(3,6)}

«activity type»
TakeOrder «rr»1

*

The TakeOrder activity class is coded in the following way:

class TakeOrder extends aCTIVITY {

 constructor({id, startTime, duration}={}) {

 super({id, startTime, duration});

 }

 static duration() {

 return rand.uniform(1, 4);

 }

 static waitingTimeout() {

 return rand.uniformInt(3, 6);

 }

}

TakeOrder.resourceRoles = {

 "orderTaker": {range: OrderTaker}

}

All activity classes inherit the attributes id, startTime and duration from the pre-defined OES foundation
class aCTIVITY. When an activity is created as a JS object during a simulation run, the value of its duration
property is obtained by invoking the duration() function defined as a class-level ("static") function for its
activity class. These activity duration functions typically implement a random variable by invoking a random
variate sampling function, such as rand.triangular(30,50,40), which samples from the triangular
probability distribution function (with min/max=30/50 and mode=40).

Notice how the resource role association between TakeOrder and OrderTaker, which defines the resource
reference property TakeOrder::orderTaker, is coded by a corresponding entry in the map-valued class-level
property resourceRoles.

Implementing the Process Design Model

The following process design model specifies six types of events: order call events, take order waiting timeouts,
lost order events, take order activities, make pizza activities, and deliver pizza activities:

TakeOrder MakePizza DeliverPizza

OrderCall

LostOrder

 Appendix A. Further Example Models 52

 Activity-Based Discrete Event Simulation with OESjs-Core2

A DPMN process design model can be decomposed into a set of event rule design models, one for each type of
event specified in the design model. Since the LostOrder event and the DeliverPizza activity do not have
any effects, we only need four event rules.

1 The OrderCall event rule

Starting with the following OrderCall event rule design model, we show how the event rules specified by each
of these event rule design models can be coded.

TakeOrder

OrderCall

The OrderCall event rule does not define any state changes of affected objects, but only the resource-
dependent scheduling of a TakeOrder activity, which is coded with the following OESjs statement:

OrderCall.successorActivity = "TakeOrder";

2 The TakeOrder Waiting Timeout event rule

LostOrder

The TakeOrder Waiting Timeout event rule only schedules the immediate occurrence of a LostOrder event,
which is coded with the following OESjs event routine within the TakeOrder activity class:

onWaitingTimeout() {

 var followupEvents=[];

 followupEvents.push(new LostOrder());

 return followupEvents;

}

3 The TakeOrder event rule

Since activities are composite events, we also have event rules for them. These rules are triggered when an
activity completes, that is, by the corresponding activity end events.

TakeOrder Make Pizza

The TakeOrder event rule only takes care of the resource-dependent scheduling of a MakePizza activity,
which is coded with the following OESjs statement:

TakeOrder.successorActivity = "MakePizza";

 Appendix A. Further Example Models 53

 Activity-Based Discrete Event Simulation with OESjs-Core2

4 The MakePizza event rule

Make Pizza DeliverPizza

The MakePizza event rule only takes care of the resource-dependent scheduling of a DeliverPizza activity,
which is coded with the following OESjs statement:

MakePizza.successorActivity = "DeliverPizza";

Attention

You can run this model from the OES GitHub website, or inspect its OESjs code.

Section A.2. Load-Haul-Dump

Image by Clker-Free-Vector-Images

A haul service company accepts requests for hauling large quantities of earth from a loading site to a dump site,
using dump trucks and wheel loaders.

You can run this model from the Sim4edu website, or inspect its OESjs code.

Note

Our Load-Haul-Dump modeling problem is based on the chapter "Example Model

2: Earthmoving operation" in the book The Art of Process-Centric Modeling with

AnyLogic by Arash Mahdavi.

 Conceptual Model

 Appendix A. Further Example Models 54

https://sim4edu.com/oesjs/core2/Make-and-Deliver-Pizza-AN-1/
https://github.com/gwagner57/oes/tree/master/JavaScript/Core2/Make-and-Deliver-Pizza-1
https://pixabay.com/users/clker-free-vector-images-3736/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=306852
https://sim4edu.com/oesjs/core2/Load-Haul-Dump-1/
https://github.com/gwagner57/oes/tree/master/JavaScript/Core2/Load-Haul-Dump-1
https://www.anylogic.com/resources/books/the-art-of-process-centric-modeling-with-anylogic/
https://www.anylogic.com/resources/books/the-art-of-process-centric-modeling-with-anylogic/

 Activity-Based Discrete Event Simulation with OESjs-Core2

A haul service company has resource pools for dump trucks and wheel loaders. While the activities go (back)
to loading site, haul, dump and go home just require a truck (or a wheel loader) as a resource, load activities
require both a truck and a wheel loader.

 Conceptual Information Model

The potentially relevant object types are:

1. haul service company,

2. wheel loaders,

3. dump trucks.

Potentially relevant types of events and activities are:

1. haul requests coming in from customers,

2. going to the loading site (an activity performed by trucks and by wheel loaders),

3. loading (performed by wheel loaders using trucks as resources),

4. hauling (performed by trucks),

5. dumping (performed by trucks),

6. going back to loading site (performed by trucks),

7. going home when the job is done (performed by trucks and by wheel loaders).

Both object types and event types, together with their participation associations, can be visually described in a
conceptual information model in the form of a special kind of UML class diagram, called Object Event (OE)
class diagram, as shown below.

 Appendix A. Further Example Models 55

 Activity-Based Discrete Event Simulation with OESjs-Core2

Figure A-4. A conceptual OE class model describing object, event and activity types.

capacity

«object type»
trucks

«object type»
wheel loaders

«object type»
haul service companies

load site
dump site

«event type»
haul requests

1

*

1

«rp»

*

1

«rp»

*«activity type»
go to loading site

«rr»1

*

«activity type»
load *

«activity type»
haul *

«rr»1..2

«activity type»
dump *

«activity type»
go back to

loading site
*

«activity type»
go home *

«rr»0..1

«rr»

0..1

{xor}

{xor}

Notice that the association end annotations «rr» and «rp» denote resource roles and resource pools. A haul
service company has resource pools for trucks and wheel loaders. The activity types haul, dump and go back to
loading site have a resource role truck for assigning a truck to any activity of one of those types. The activity
types go to loading site and go home have either a a resource role truck or a resource role wheel loader, as
indicated by the alternative association constraint expressed with a dashed line annotated with {xor}. The
activity type load has both resource role truck and a resource role wheel loaders for assigning at least one and at
most two wheel loaders to any load activity (as indicated by the multiplicity "1..2" at the «rr» association end at
the class wheel loaders).

 Conceptual Process Model

The involved types of events and activities can be related with each other via resource-dependent activity
scheduling arrows and event scheduling arrows, as shown in the following DPMN process diagram:

go to loading site load haul dump

job done?

go back to loading site

go home

yes

no
haul requests

Notice that there are three types of arrows in this DPMN diagram:

 Appendix A. Further Example Models 56

 Activity-Based Discrete Event Simulation with OESjs-Core2

1. Event Scheduling arrows, like the one between load and haul, have the meaning that the succeeding
activity is started as soon as the preceding activity has been completed (there is no need for enqueuing
a planned activity, since all resources required by the succeeding activity are provided by the preceding
activity). Event Scheduling arrows are not part of BPMN, rather they have been proposed by Schruben
(1983) for Event Graphs.

2. A Multiple Events Scheduling arrow, like the one between requests and go to loading site, means that
one instance of the preceding event type triggers multiple instances of the succeeding event type. In our
example model, this means that one request event is followed by multiple go to loading site activities,
one for each truck and each wheel loader assigned to the job.

3. A Resource-Dependent Activity Scheduling arrow, like the one between go to loading site and load
activities, means that as soon as an activity of the preceding activity type has been completed, a new
planned activity is added to the queue of planned activities of the succeeding type (and started as soon as
all required resources are available).

The model shows that when a haul request comes in, the haul service company deploys multiple trucks and
wheel loaders to the loading site, each of them performing a go to loading site activity, as indicated by the
double arrow between the haul requests event circle and the go to loading site activity rectangle. Each of these
activities leads to enqueuing a new planned load activity, as indicated by the resource-dependent activity
scheduling arrow from the go to loading site activity shape to the load activity shape. Such an enqueued
(planned) activity is going to be dequeued and started as soon as the required resources become available. This
means that as soon as a wheel loader is available, the next load activity is going to be started. When a load
activity is completed, a haul activity and then a dump activity are going to start immediately, as indicated by the
event scheduling arrows between them.

A more complete model prevents trucks to go back to the loading site and perform a load activity even when the
job has been completed during the go back activity (resulting in haul and dump activities with an empty truck).
For avoiding this uneconomic behavior, a second decision if the job has been done needs to be taken after the
go back activity. In addition, the model has to describe that wheel loaders also go home when their job has been
done. This is shown in the following refined model:

go to loading site load haul dump

job done?

go back to loading site

go home

yes

no
haul requests

job done?

yes

no

job done

Figure A-5. A refined conceptual process model.

 Simulation Design

In our simulation design, we consider only one particular haul service company, which does not have to be
modeled as an explicit object. Also, we abstract away from the fact that also wheel loaders have to go to, and
return from, the loading site by assuming that they are already at the site when the dump trucks arrive.

 Appendix A. Further Example Models 57

https://dl.acm.org/citation.cfm?id=358460

 Activity-Based Discrete Event Simulation with OESjs-Core2

 Information Design Model

In the information design model, we need to define a status attribute for all resource object types, such as Truck
and WheelLoader, and a duration function, typically representing a random variable, for each activity type:

Figure A-6. An information design model for the Load-Haul-Dump system.

status : ResourceStatusEL
capacity : Integer = 15

«object type»
Truck

status : ResourceStatusEL

«object type»
WheelLoader

quantity : Integer

«event type»
HaulRequest

«rv» duration() : Decimal {Tri(30,50,40)}

«activity type»
GoToLoadingSite

«rr»1

*

«rv» duration() : Decimal {U(10,20)}

«activity type»
Load *

«rv» duration() : Decimal {Tri(40,60,55)}

«activity type»
Haul

*

«rr»1..2

«rv» duration() : Decimal {Tri(5,25,15)}

«activity type»
Dump *

«rv» duration() : Decimal {Tri(30,50,40)}

«activity type»
GoBackToLoadingSite

*

«rv» duration() : Decimal {Tri(30,50,40)}

«activity type»
GoHome *

AVAILABLE
BUSY
OUT_OF_ORDER

«enumeration»
OES::ResourceStatusEL

Notice how functions representing random variables, like the duration function of all activity types, are
marked with the keyword (or UML 'stereotype') «rv» standing for "random variable". These random variable
functions sample from a probability distribution function (PDF), which is symbolically indicated with
expressions like Tri(30,50,40) standing for the triangular PDF with lower and upper bounds 30 and 50, and a
median of 40.

Each activity type is associated with Truck or WheelLoader as their resource role(s), indicated with the
association end stereotype «rr» standing for "resource role".

 Process Design Model

A process design model, in the form of a DPMN process diagram as shown below, is derived from a conceptual
process model by

1. Abstracting away from items that are not design-relevant.

2. Defining event variables, if needed.

3. Defining object variables in the form of Data Object boxes for specifying state changes of objects
affected by events.

4. Formalizing decision conditions on the basis of event and object variables.

 Appendix A. Further Example Models 58

 Activity-Based Discrete Event Simulation with OESjs-Core2

Figure A-7. A computationally complete process design for the Load-Haul-Dump business process.

GoToLoadingSite Load Haul Dump

GoBackToLoadingSite

GoHome

r: HaulRequest

modelVariables
--
nmrOfLoads := r.quantity / Truck.capacity

for truck of
resourcePools["trucks"]

modelVariables

nmrOfLoads--

[nmrOfLoads = 0]

[nmrOfLoads > 0]

Section A.2.1. Implementation with OESjs

The JavaScript-based simulator OESjs implements the Object Event Simulation paradigm, and, consequently,
allows a straight-forward coding of OE class models and DPMN process models.

 Implementing the Information Design Model

For implementing the OE class design model with OESjs, we have to code all object types, event types and
activity types specified in the model in the form of JavaScript classes.

status : ResourceStatusEL
capacity : Integer = 15

«object type»
Truck

AVAILABLE
BUSY
OUT_OF_ORDER

«enumeration»
OES::ResourceStatusEL

The Truck object class can be coded with OESjs-Core2 in the following way:

class Truck extends oBJECT {

 constructor({ id, name, status}) {

 super(id, name); // invoke the oBJECT constructor

 this.status = status;

 }

}

// a class-level attribute

Truck.capacity = 15; // m3

All object classes inherit an id attribute and a name attribute from the pre-defined OES foundation class
oBJECT. Since trucks are resource objects, we need to define a status property for them. We also define
a class-level attribute capacity for modeling their load capacity, assuming that all trucks have the same
capacity.

The WheelLoader object class is coded in the same way as Truck.

 Appendix A. Further Example Models 59

 Activity-Based Discrete Event Simulation with OESjs-Core2

quantity : Integer

«event type»
HaulRequest

The HaulRequest event class can be coded in the following way:

class HaulRequest extends eVENT {

 constructor({ occTime, delay, quantity}) {

 super({occTime, delay});

 this.quantity = quantity;

 }

 onEvent() {

 ...

 }

}

All event classes inherit an occTime attribute and a delay attribute from the pre-defined OES foundation class
eVENT. Any event in OES can be created either with a value for the attribute occTime (standing for occurrence
time) or with a value for the attribute delay. In the latter case, the event's occurrence time is automatically
derived by adding the value of delay to the current simulation time. In addition, the HaulRequest event class
has a property quantity for specifying the quantity to be hauled.

The onEvent method of the HaulRequest event class is not part of the information design model. Rather, it is
implementing an event rule specified in the process design model. Consequently, it will be discussed below.

status : ResourceStatusEL
capacity : Integer = 15

«object type»
Truck

«rv» duration() : Decimal {Tri(30,50,40)}

«activity type»
GoToLoadingSite

«rr»1

*

The GoToLoadingSite activity class can be coded in the following way:

class GoToLoadingSite extends aCTIVITY {

 constructor({id, startTime, duration}={}) {

 super({id, startTime, duration});

 }

 static duration() {return rand.triangular(30, 50, 40);}

}

GoToLoadingSite.resourceRoles = {

 "truck": {range: Truck}

}

 Appendix A. Further Example Models 60

 Activity-Based Discrete Event Simulation with OESjs-Core2

All activity classes inherit the attributes id, startTime and duration from the pre-defined OES foundation
class aCTIVITY. When an activity is created as a JS object during a simulation run, the value of its duration
property is obtained by invoking the duration() function defined as a class-level ("static") function for its
activity class. These activity duration functions typically implement a random variable by invoking a random
variate sampling function, such as rand.triangular(30,50,40), which samples from the triangular
probability distribution function (with min/max=30/50 and mode=40).

Notice how the resource role association between GoToLoadingSite and Truck, which defines the resource
reference property GoToLoadingSite::truck, is coded by a corresponding entry in the map-valued class-level
property resourceRoles.

 Implementing the Process Design Model

A DPMN process design model can be decomposed into a set of event rule design models, one for each type of
event specified in the design model. Starting with the HaulRequest event rule design model, we show how
the event rules specified by each of these event rule design models can be coded in the form of an onEvent
method.

Figure A-8. A design model for the HaulRequest event rule.

GoToLoadingSite

r: HaulRequest

modelVariables
--
nmrOfLoads := r.quantity / Truck.capacity

for truck of
resourcePools["trucks"]

In the following HaulRequest event rule method onEvent, all available trucks are allocated to the
current haul request, and, after computing the number of loads, for each of the allocated trucks a new
GoToLoadingSite activity is started:

class HaulRequest extends eVENT {

 ...

 onEvent() {

 const followupEvents=[],

 allocatedTrucks = sim.resourcePools["trucks"].allocateAll();

 // assign model variable

 sim.model.v.nmrOfLoads = Math.ceil(this.quantity / Truck.capacity);

 for (const t of allocatedTrucks) {

 const goActy = new GoToLoadingSite();

 // assign truck as required resource

 goActy.truck = t;

 // start GoToLoadingSite activity

 followupEvents.push(new aCTIVITYsTART({plannedActivity: goActy}));

 }

 return followupEvents;

 }

 Appendix A. Further Example Models 61

 Activity-Based Discrete Event Simulation with OESjs-Core2

}

Since activities are composite events, we also have event rules for them. The following GoToLoadingSite event
rule is triggered whenever a GoToLoadingSite activity is completed, since the completion of an activity counts
as its occurrence event.

Figure A-9. A design model for the GoToLoadingSite event rule.

GoToLoadingSite Load

This rule states that whenever a GoToLoadingSite activity ends (or is completed), then a new planned Load
activity is enqueued, if no wheel loader is available, or, otherwise, a new Load activity is started. In OESjs, it is
coded in the following declarative way:

GoToLoadingSite.successorActivity = "Load"

Such a successor activity assignment allows the simulator to check if the required resources are available and
then start the successor activity, or, otherwise, enqueue a new planned successor activity.

Figure A-10. A design model for the Load event rule.

Load Haul

modelVariables

nmrOfLoads--

This rule states that whenever a Load activity ends, the model variable nmrOfLoads is decremented by 1, and
a Haul activity is immediately started (as a successor activity). Since the Haul activity doesn't require any
additional resources, there is no need to enqueue a planned activity and wait for the availability of resources. In
OESjs, this rule is coded in the following way:

class Load extends aCTIVITY {

 ...

 onActivityEnd() {

 const followupEvents = [];

 // decrement nmrOfLoads counter

 sim.model.v.nmrOfLoads--;

 return followupEvents;

 }

 ...

}

Load.successorActivity = "Haul";

 Appendix A. Further Example Models 62

 Activity-Based Discrete Event Simulation with OESjs-Core2

Notice that the state change expressed in the modelVariables object rectangle, the decrementation of
nmrOfLoads, is taken care of in the onActivityEnd method of the Load activity class. Instead of explicitly
scheduling the start of the succeeding Haul activity in that method, we simply define Haul to be the successor
activity of Load.

Figure A-11. A design model for the Haul event rule.

Haul Dump

The Haul event rule states that whenever a Haul activity ends, it is immediately succeeded by a Dump activity.
It is coded in the following way:

Haul.successorActivity = "Dump";

Figure A-12. A design model for the Dump event rule.

Dump

GoBackToLoadingSite

GoHome

[nmrOfLoads = 0]

The Dump event rule states that when a Dump activity ends and the model variable nmrOfLoads has the
value 0, it is immediately succeeded by a GoHome activity, otherwise it is immediately succeeded by a
GoBackToLoadingSite activity. The rule is coded by defining the successor activity as a function returning
either "GoBackToLoadingSite" or "GoHome" in the following way:

Dump.successorActivity = function () {

 return sim.model.v.nmrOfLoads === 0 ? "GoHome":"GoBackToLoadingSite";

}

Figure A-13. A design model for the GoBackToLoadingSite event rule.

Load

GoBackToLoadingSite

GoHome

[nmrOfLoads > 0]

The GoBackToLoadingSite event rule states that when a GoBackToLoadingSite activity ends and the
model variable nmrOfLoads still has a value greater than 0, a new planned Load activity is enqueued;

 Appendix A. Further Example Models 63

 Activity-Based Discrete Event Simulation with OESjs-Core2

otherwise a GoHome activity is immediately started. The rule is coded by defining the successor activity of
GoBackToLoadingSite as a function returning either "Load" or "GoHome" in the following way:

GoBackToLoadingSite.successorActivity = function () {

 return sim.model.v.nmrOfLoads > 0 ? "Load":"GoHome";

}

 Appendix A. Further Example Models 64

 Activity-Based Discrete Event Simulation with OESjs-Core2

Appendix B. Simulator Architecture

OES Core 2 adds the following features to OES Core 1:

• activities as composite events, having a start event and an end event, and a duration as the time in-between
their start and end events

• resource roles with resource cardinality constraints

• resource pools (supported in two forms: count pools and individual pools)

• automated (a) throughput, (b) queue length, (c) waiting time, (d) cycle/throughput time, and (e) resource
utilization statistics per activity type

The OES Core 2 simulator's information architecture is described by the following class diagram:

id : Integer {id}
PERFORMER : String
plannedActivities : Queue

Activity

toString() : String
onEvent() : List<Event> {abstract}

occTime[0..1] : Number
startTime[0..1] : Number
duration[0..1] : Number

Event

name : String

ResourcePool

isAvailable(in card : Integer) : Boolean
allocate(in card : Integer)
release(in card : Integer)

available : Integer
size : Integer

CountPool

isAvailable(in card : Integer) : Boolean
allocate(in card : Integer) : List<Object>
release(in resource : Object)

availResources : List<Object>
busyResources : List<Object>

IndividualPool

name[1] : String
card[1] : Integer
range[0..1] : ObjectType

ResourceRole

1

resourceRoles

*

*
1

ActivityStart

*

plannedActivity 1

«activity type»
ExampleAT

ActivityEnd

*

1

 Appendix B. Simulator Architecture 65

 Activity-Based Discrete Event Simulation with OESjs-Core2

Index

E

exogenous event, 7

R

random variable, 7
recurrence, 7

 i

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction to Object Event Modeling of Activities
	1.1. Making a Conceptual Model of the System under Investigation
	1.2. Making Simulation Design Models

	2. Activity-Based Discrete Event Simulation with OESjs-Core2
	2.1. Simulation Time
	2.2. Simulation Models
	2.3. Simulation Scenarios
	2.4. Statistics
	2.5. Simulation Experiments

	3. Special Issues in Activity-Based Modeling
	3.1. Waiting Timeouts
	3.2. Admissible Resources
	3.3. Organizational Positions and Resource Pools
	3.4. Alternate Resource Pools
	3.5. Task Priorities
	3.6. Task Preemption

	A. Further Example Models
	A.1. Make and Deliver Pizza
	A.1.1. Implementation with OESjs

	A.2. Load-Haul-Dump
	A.2.1. Implementation with OESjs

	B. Simulator Architecture
	Index

