
Tutorial: Discrete Event
Simulation with OESjs-Core1

How to create and run simulations with the JavaScript-based simulation
framework OESjs Core1 available from the OES GitHub repo

Gerd Wagner G.Wagner@b-tu.de

Copyright © 2020-23 Gerd Wagner (CC BY-NC)

Published 2023-01-31

Available as HTML and PDF.

Abstract

This tutorial article explains how to use the OESjs Core1 simulation framework, which implements an
architecture for Object Event Simulation (OES), extending the OESjs Core 0 framework by adding fixed-
increment time progression, a seedable random number generator, a set of sampling functions from various
probability distributions (uniform, triangular, normal, exponential, etc.), multiple scenarios per model, multiple
experiment types per model, model parameters, parameter variation experiments, as well as persistent storage
and export of experiment results.

https://www.facebook.com/sharer.php?u=https://sim4edu.com/oesjs/core1/tutorial.html
https://twitter.com/intent/tweet?url=https://sim4edu.com/oesjs/core1/tutorial.html&text=Tutorial:%20Discrete%20Event%20Simulation%20with%20OESjs-Core1
https://www.linkedin.com/shareArticle?mini=true&url=https://sim4edu.com/oesjs/core1/tutorial.html
mailto:?subject=Tutorial:%20Discrete%20Event%20Simulation%20with%20OESjs-Core1&body=This%20article%20shows%20how%20to%20create%20and%20run%20a%20simulation%20model%20with%20the%20JavaScript-based%20simulation%20framework%20OESjs-Core1%20available%20on%20Sim4edu.com.%20OESjs-Core1%20implements%20the%20Object%20Event%20Simulation%20paradigm%2C%20representing%20a%20general%20Discrete%20Event%20Simulation%20approach%20based%20on%20object-oriented%20modeling%20and%20event%20scheduling.%0A%0Ahttps://sim4edu.com/oesjs/core1/tutorial.html
https://sim4edu.com/oesjs/core1/
https://github.com/gwagner57/oes/blob/master/OESjs-Core1.zip
mailto:G.Wagner@b-tu.de
https://creativecommons.org/licenses/by-nc/4.0/
https://sim4edu.com/oesjs/core1/tutorial.html
https://sim4edu.com/oesjs/core1/tutorial.pdf

 Tutorial: Discrete Event Simulation with OESjs-Core1

Table of Contents

List of Figures ... ii

List of Tables ... iii

1. Introduction to Object Event Modeling .. 1
1.1. Making a Conceptual Model of the System under Investigation .. 2
1.2. Making a Simulation Design Model ... 2

2. Creating Object Event Simulations with OESjs-Core1 .. 8
2.1. Simulation Time .. 9
2.2. Simulation Models ... 11
2.3. Simulation Scenarios ... 18
2.4. Statistics ... 21
2.5. Time Series .. 22
2.6. Simulation Experiments ... 23
2.7. Using the Simulation Log .. 25
2.8. Observation and User Interaction .. 26

3. Simulation Programming with OESjs .. 27
3.1. Accessing Objects .. 27
3.2. Defining and Using a History Attribute .. 27

4. Defining User Interfaces ... 29
4.1. Defining an Observation User Interface .. 29
4.2. Defining a User Interface for User Interactions .. 31

A. Simulator Architecture ... 32

Index ... i

 i

 Tutorial: Discrete Event Simulation with OESjs-Core1

List of Figures

1-1. An information design model for Service-Desk-0 .. 4

1-2. A process design model in the form of an Event Graph, where the state variable Q stands for queueLength
... 5

1-3. An information design model for Service-Desk-1 .. 6

1-4. A process design model in the form of a DPMN Process Diagram ... 6

 ii

 Tutorial: Discrete Event Simulation with OESjs-Core1

List of Tables

2-1. Simulation Log .. 11

2-2. Statistics ... 22

 iii

 Tutorial: Discrete Event Simulation with OESjs-Core1

Chapter 1. Introduction to Object Event Modeling

Simulation is used widely today: in many scientific disciplines for investigating specific research questions, in
engineering for testing the performance of designs, in education for providing interactive learning experiences,
and in entertainment for making games.

Both static systems/structures and dynamic systems can be modeled and simulated. Modeling and simulation
(M&S) of static structures, such as the surface textures of materials, is only an issue in physics and computer
graphics, while M&S of dynamic systems is an issue in all scientific and engineering disciplines, including
management science, economics and other social sciences.

A dynamic system may be subject to discrete or continuous state changes. For simulating a dynamic system one
has to model

1. the types of objects it is composed of,

2. the types of events that cause discrete state changes of objects,

3. the discrete state changes of objects caused by the occurrence of an event of some type,

4. the follow-up events caused by the occurrence of an event of some type,

5. the continuous state changes of objects (described with the help of differential equations).

A (purely) continuous dynamic system does not include events and their causal effects (list items 2-4), but only
objects that are subject to continuous state changes (list items 1 and 5). A (purely) discrete dynamic system does
not include any continuous state changes of objects (list item 5). Many real-world systems include both discrete
and continuous state changes, in which case they may be called hybrid dynamic systems.

In this tutorial, we are only concerned with discrete state changes. Consequently, we only consider purely
discrete dynamic systems, also called discrete event systems, which consist of:

• objects (of various types) whose states may be changed by

• events (of various types) occurring in a sequence of time points, causing state changes of affected objects
and follow-up events.

This means that for modeling such a system, we have to

1. describe its object types and event types (in an information model);

2. specify, for any event type, the state changes of objects and the follow-up events caused by the
occurrence of an event of that type (in a process model).

 Chapter 1. Introduction to Object Event Modeling 1

 Tutorial: Discrete Event Simulation with OESjs-Core1

1.1. Making a Conceptual Model of the System under Investigation

Let's look at an example. We model a system of one or more service desks, each of them having its own queue,
as a discrete event system:

• Customers arrive at a service desk at random times.

• If there is no other customer in front of them, and the service desk is available, they are served
immediately, otherwise they have to queue up in a waiting line.

• The duration of services varies, depending on the individual case.

• When a service is completed, the customer departs and the next customer is served, if there is still any
customer in the queue.

The potentially relevant object types of the system under investigation are:

• customers,

• service desks,

• waiting lines,

• service clerks, if the service is performed by (one or more) clerks.

The potentially relevant event types are:

• customer arrivals,

• service starts,

• service terminations,

• customer departures.

1.2. Making a Simulation Design Model

When making a simulation design based on the conceptual model of the system under investigation, wee need
to abstract away from many items of the conceptual model for obtaining a sufficiently simple design. The right
degree of abstraction depends on the purpose of the model. But abstracting away from too many things may

 Chapter 1. Introduction to Object Event Modeling 2

 Tutorial: Discrete Event Simulation with OESjs-Core1

make a model too unnatural and not sufficiently generic, implying that it cannot be easily extended to model
additional features (such as more than one service desk).

In our example, the purpose of the simulation model is to compute the maximum queue length and possibly also
the service utilization. So, we may abstract away from the following object types:

• customers: we don't need any information about individual customers.

• waiting lines: we don't need to know who is next, it's sufficient to know the length of the queue.

• service clerks: we don't need any information about the service clerk(s).

Notice that, for simplicity, we consider the customer that is currently being served to be part of the queue. In
this way, in the simulation program, we can check if the service desk is busy by testing if the length of the queue
is greater than 0. In fact, for being able to compute the service utilization and the maximum queue length, the
queue length is the only relevant state variable.

State variables can be modeled in the simple form of global variables or in the form of attributes of suitable
object types. Consequently, the simplest model we can make for the given problem, called Service-Desk-0,
has only one global variable: queueLength. But, as an alternative, more explicit, model, called Service-Desk-1,
we will also model the system state in terms of (one or more) ServiceDesk objects having only one property:
queueLength. As opposed to the simpler model defining queueLength as a global variable, this model allows
defining simulation scenarios with two or more service desks operating simultaneously.

We also look for opportunities to simplify our event model by dropping event types that are not needed, e.g.,
because their events temporally coincide with events of another type. This is the case with service terminations
and customer departure events. Consequently, we can drop the event type service terminations.

There are two situations when a new service can be started: either when the waiting line is empty and a new
customer arrives, or when the waiting line is not empty and a service terminates. Therefore, any service start
event immediately follows either a customer arrival or a customer departure event, and we may abstract away
from service start events and drop the corresponding event type from the design model.

So we only need to consider customer arrival and customer departure events, modeled with the two event types
Arrival and Departure.

The event type Arrival is an example of a type of exogenous events, which are not caused by any causal
regularity of the system under investigation and, therefore, have to be modeled with a recurrence function that
allows to compute the time of the next occurrence of an event of that type. In OES, exogenous event types are a
built-in concept such that an OES simulator takes care of creating the next exogenous event whenever an event
of that type is processed. This mechanism makes sure that there is a continuous stream of exogenous events
throughout a simulation run.

We also have to model the random variations of two variables: (1) the recurrence of (that is, the time in-between
two) customer arrival events and (2) the service duration. In a class model, such random variables can be
defined as special class-level ("static") operations, with a stereotype «rv», in the class to which they belong, as
shown in the diagrams below.

We model the recurrence of customer arrival events as a discrete random variable with a uniform distribution
between 1 and 6 minutes, which we express in the class diagram of the information design model by appending
the symbolic expression U{1-6} within curly braces to the operation declaration, following the UML syntax for
property/method modifiers.

 Chapter 1. Introduction to Object Event Modeling 3

 Tutorial: Discrete Event Simulation with OESjs-Core1

We model the service time random variable with an empirical distribution of 2 minutes with probability 0.3,
3 minutes with probability 0.5 and 4 minutes with probability 0.2, using the symbolic expression Freq{ 2:0.3,
3:0.5, 4:0.2}.

Computationally, object types and event types correspond to classes, either of an object-oriented information
model, such as a UML class diagram, or of a computer program written in an object-oriented programming
language, such as Java or JavaScript.

1.2.1. Service-Desk-0: Modeling queueLength as a global variable

As discussed above, the simplest model for the service desk problem with maximum queue length statistics
(available in the Sim4edu library as Service-Desk-0) has only one global variable: queueLength, which is a non-
negative integer, and a global function for computing the random service time, but no object type.

An information model for Service-Desk-0 consists of a special class for defining model variables and functions,
and two classes for defining the event types Arrival and Departure, as shown in Figure 1-1. An information
design model for Service-Desk-0.

Figure 1-1. An information design model for Service-Desk-0

«rv» serviceTime() : Integer {Freq{2:0.3, 3:0.5, 4:0.2}}

queueLength : NonNegativeInteger

Global Variables and Functions

«rv» recurrence() : Integer {U(1-6)}

«exogenous event type»
Arrival «caused event type»

Departure

In addition to an information design model for defining the simulation system's state structure, we also need to
make a process design model for defining the dynamics of the simulation system. The dynamics of a system
consists of events triggering state changes and follow-up events. A process model can be expressed with the
help of event rules, which define what happens when an event (of a certain type) occurs, or, more specifically,
which state changes and which follow-up events are caused by an event of that type.

Event rules can be expressed with the help of a process model diagram or in pseudo-code, or in a simulation or
programming language. The following Event Graph provides a process design model for the Service-Desk-0
simulation scenario. Circles represent events (or, more precisely, event types) and arrows, which may be
annotated with a delay expression, such as +serviceTime(), represent event scheduling relationships. An arrow
with a mini-diamond at its source end represents a conditional event scheduling relationship where the condition
is expressed in brackets below or above the arrow.

 Chapter 1. Introduction to Object Event Modeling 4

https://sim4edu.com/sims/14

 Tutorial: Discrete Event Simulation with OESjs-Core1

Figure 1-2. A process design model in the form of an Event
Graph, where the state variable Q stands for queueLength

Arrival
{Q++}

Departure
{Q--}

{Q := 0}

+recurrence()

[Q > 0]

[Q = 1]

+serviceTime()

Event Graphs have originally been proposed by L. Schruben (1983). Their visual syntax has been improved
and harmonized with the business process modeling language BPMN in the Discrete Event Process Modeling
Notation (DPMN) proposed by Wagner (2018) and more thoroughly described in the book Discrete Event
Simulation Engineering.

The following table shows the two event rules defined by the above Event Graph, expressed in pseudo-code.

ON (event type) DO (event routine)

Arrival @ t

INCREMENT queueLength

IF queueLength = 1 THEN

 sTime := serviceTime()

 SCHEDULE Departure @ (t + sTime)

Departure @ t

DECREMENT queueLength

IF queueLength > 0 THEN

 sTime := serviceTime()

 SCHEDULE Departure @ (t + sTime)

1.2.2. Service-Desk-1: Modeling queueLength as an attribute

In our extended model (Service-Desk-1) we represent the state variable queueLength as an attribute of an object
type ServiceDesk. This results in a model with three classes, the object class ServiceDesk with an attribute
queueLength, and the event classes Arrival and Departure, both with a reference property serviceDesk for
referencing the service desk at which an event occurs. When we also want to compute the service utilization
statistics, we need to add an attribute serviceTime to the Departure class for being able to update the service
utilization statistics when a customer departs.

Both event types, Arrival and Departure, now have a many-to-one association with the object type ServiceDesk.
This expresses the fact that any such event occurs at a particular service desk, which participates in the event.
This association is implemented in the form of a reference property serviceDesk in each of the two event types,
as shown in Figure 1-3. An information design model for Service-Desk-1.

 Chapter 1. Introduction to Object Event Modeling 5

https://dl.acm.org/citation.cfm?id=358460
https://articles.jsime.org/1/1/Modeling-for-Simulation-Part-I
https://sim4edu.com/reading/des-engineering/
https://sim4edu.com/reading/des-engineering/
https://sim4edu.com/sims/1

 Tutorial: Discrete Event Simulation with OESjs-Core1

Figure 1-3. An information design model for Service-Desk-1

«rv» serviceTime() : Integer {Freq{2:0.3, 3:0.5, 4:0.2}}

queueLength : NonNegativeInteger

«object type»
ServiceDesk

«rv» recurrence() : Integer {U(1-6)}

«exogenous event type»
Arrival

serviceTime : PositiveInteger

«caused event type»
Departure

1

*

*

In addition to an information model, we need to make a process model, which captures the dynamics of the
service desk system consisting of arrival and departure events triggering state changes and follow-up events.
The following DPMN Process Diagram provides a process design model for the Service-Desk-1 simulation
scenario. As in Event Graphs, circles represent event types and arrows represent event scheduling relationships.
DPMN extends Event Graphs by adding object rectangles, attached to event circles, representing state change
patterns for objects that are affected by events of that type.

Figure 1-4. A process design model in the form of a DPMN Process Diagram

sd: ServiceDesk
[sd = a.serviceDesk]

INCREM sd.queueLength

a:Arrival

sd: ServiceDesk
[sd = d.serviceDesk]

DECREM sd.queueLength

d:Departure+ServiceDesk.serviceTime()

[sd.queueLength = 1] [sd.queueLength > 0]

+ServiceDesk.serviceTime()

The following table shows the two event rules defined by the DPMN diagram, which now account for the fact
that both types of events occur at a particular service desk that is referenced by the event expression parameter
sd.

ON (event type) DO (event routine)

Arrival(sd) @ t INCREMENT sd.queueLength

 Chapter 1. Introduction to Object Event Modeling 6

 Tutorial: Discrete Event Simulation with OESjs-Core1

ON (event type) DO (event routine)

with sd : ServiceDesk

IF sd.queueLength = 1 THEN

 sTime := ServiceDesk.serviceTime()

 SCHEDULE Departure(sTime, sd) @(t + sTime)

Departure(sd) @ t

with sd : ServiceDesk

DECREMENT sd.queueLength

IF sd.queueLength > 0 THEN

 sTime := ServiceDesk.serviceTime()

 SCHEDULE Departure(sTime, sd) @(t + sTime)

 Chapter 1. Introduction to Object Event Modeling 7

 Tutorial: Discrete Event Simulation with OESjs-Core1

Chapter 2. Creating Object Event Simulations with OESjs-Core1

The JavaScript-based simulation framework OESjs Core1 implements the Object Event Simulation (OES)
paradigm, representing a general Discrete Event Simulation approach based on object-oriented modeling and
event scheduling.

The code of an OESjs Core1 simulation consists of (1) the OESjs Core1 framework files in the folder
framework, (2) general library files in the lib folder and (3) the following files to be created by the simulation
developer:

1. For each object type ObjT, a JS code file ObjT.js.

2. For each event type EvtT, a JS code file EvtT.js.

3. A simulation.js file defining further parts of the simulation, such as statistics variables and the
initial state.

OESjs Core1 supports three forms of simulations:

1. Standalone scenario simulations, which are good for getting a quick impression of a simulation model,
e.g., by checking some simple statistics.

2. Simple simulation experiments, which are defined as a set of replicated simulation scenario runs,
providing summary statistics like mean, standard deviation, minimum/maximum and confidence
intervals for each statistics variable defined in the underlying model.

3. Parameter variation experiments, for which a set of experiment parameters with value sets are defined
such that each experiment parameter corresponds to a model parameter. When an experiment is run,
each experiment parameter value combination defines an experiment scenario, which is run repeatedly,
according to the specified number or replications for collecting statistics.

OESjs Core1 allows to define two or more simulation scenarios for a given model. While an experiment type is
defined for a given model, an experiment of that type is run on top of a specific scenario.

Using a simulation library like OESjs Core1 means that only the model-specific logic has to be coded (in the
form of object types, event types, event routines and other functions for model-specific computations), but not
the general simulator operations (e.g., time progression and statistics) and the environment handling (e.g., user
interfaces for statistics output).

The following sections present the basic concepts of the OESjs Core1 simulation library.

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 8

https://sim4edu.com/oesjs/core1/
https://sim4edu.com/OES

 Tutorial: Discrete Event Simulation with OESjs-Core1

Attention

You can download OESjs Core1 in the form of a ZIP archive file from the OES

GitHub repo. After extracting the archive on your local disk, you can run any of its

example models by going to its folder and loading its index.html file into your

browser. You can create your own model by making a copy of one of the example

model folders and using its code files a s starting point.

Since an OESjs simulation includes a JS worker file for running the simulator in its

own thread separately from the main (user interface) thread, it cannot be run from

the local file system without changing the browser's default configuration (due to

the web security policy CORS).

For developing OESjs simulations on your computer, you should use Firefox

because its security settings can be easily configured such that it allows

loading JS worker files directly from the local file system by disabling the flag

"strict_origin_policy" specifically for file URLs:

1. Enter "about:config" in the Firefox search bar.

2. Search for "security.fileuri.strict_origin_policy".

3. Disable this policy by changing its value from true to false.

This creates only a small security risk because the web security policy called

"CORS" is only disabled for file URLs, but not for normal URLs.

For other browsers, like Chrome, you need to install a local HTTP server and

load your simulation's index.html file from that local server, or run it via the JS

development tool WebStorm (which has a built-in local server), because the only

option for loading JS worker files from the local file system in Chrome would be

to disable the CORS policy completely (see how to disable CORS in Chrome), but

that would create a more severe security risk and is therefore not recommended.

2.1. Simulation Time

A simulation model has an underlying time model, which can be either discrete time, when setting

sim.model.time = "discrete";

or continuous time, when setting

sim.model.time = "continuous";

Choosing a discrete time model means that time is measured in steps (with equal durations), and all temporal
random variables used in the model need to be discrete (i.e., based on discrete probability distributions).
Choosing a continuous time model means that one has to define a simulation time granularity, as explained in
the next sub-section.

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 9

https://github.com/gwagner57/oes/blob/master/OESjs-Core1.zip
https://www.freecodecamp.org/news/cors-csp-web-security-concepts-for-developers/
https://windowsreport.com/browser-not-support-cross-origin/

 Tutorial: Discrete Event Simulation with OESjs-Core1

In both cases, the underlying simulation time unit can be either left unspecified (e.g., in the case of an abstract
time model), or it can be set to one of the time units "ms", "s", "min", "hour", "day", "week", "month" or "year",
as in

sim.model.timeUnit = "hour";

Typical examples of time models are:

1. An abstract discrete model of time where time runs in steps without any concrete meaning:

sim.model.time = "discrete";

2. A concrete discrete model of time in number of days:

sim.model.time = "discrete";

sim.model.timeUnit = "day";

3. A concrete continuous model of time in number of seconds:

sim.model.time = "continuous";

sim.model.timeUnit = "s";

2.1.1. Time Granularity

A model's time granularity is the time delay until the next moment, such that the model does not allow
considering an earlier next moment. This is captured by the simulation parameter nextMomentDeltaT used
by the simulator for scheduling immediate events with a minimal delay. When a simulation model is based
on discrete time, nextMomentDeltaT is set to 1, referring to the next time point. When a simulation model is
based on continuous time, nextMomentDeltaT is set to the default value 0.001, unless the model parameter
sim.model.nextMomentDeltaT is explicitly assigned in the simulation.js file.

2.1.2. Time Progression

An important issue in simulation is the question how the simulation time is advanced by the simulator. The
OES paradigm supports next-event time progression and fixed-increment time progression, as well as their
combination.

An OESjs-Core1 model with fixed-increment time progression has to define a suitable periodic time event type,
like EachSecond or EachDay in the form of an exogenous event type with a recurrence function returning the
value 1. Such a model can be used for

1. modeling continuous state changes (e.g., objects moving in a continuous space), or

2. making a discrete model that abstracts away from explicit events and uses only implicit periodic time
events ("ticks"), which is a popular approach in social science simulation.

Examples of discrete event simulation models with fixed-increment time progression and no explicit events are
the Schelling Segregation Model and the Susceptible-Infected-Recovered (SIR) Disease Model.

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 10

https://sim4edu.com/sims/6
https://sim4edu.com/sims/25/index.html

 Tutorial: Discrete Event Simulation with OESjs-Core1

2.2. Simulation Models

2.2.1. Model Variables and Functions

In the simple model of a service desk discussed in the previous section, we define one (global) model variable,
queueLength, one model function, serviceTime(), and two event types, as shown in the following class diagram:

«rv» serviceTime() : Integer {Freq{2:0.3, 3:0.5, 4:0.2}}

queueLength : NonNegativeInteger

Global Variables and Functions

«rv» recurrence() : Integer {U(1-6)}

«exogenous event type»
Arrival «caused event type»

Departure

Notice that this model does not define any object type, which implies that the system state is not composed
of the states of objects, but of the states of model variables, here it consists of the state of the model variable
queueLength. The discrete random variable for modeling the random variation of service durations is
implemented as a model function serviceTime shown in the Global Variables and Functions class. It samples
integers between 2 and 4 from the empirical probability distribution Frequency{ 2:0.3, 3:0.5, 4:0.2}. The model
can be coded with OESjs-Core1 in the following way:

// (global) model variable

sim.model.v.queueLength = 0;

// (global) model function

sim.model.f.serviceTime = function () {

 var r = math.getUniformRandomInteger(0, 99);

 if (r < 30) return 2; // probability 0.30

 else if (r < 80) return 3; // probability 0.50

 else return 4; // probability 0.20

};

You can run this Service-Desk-0 model from the project's GitHub website. An example of a run of this model is
shown in the following simulation log:

Table 2-1. Simulation Log

Step Time System State Future Events

0 0 queueLength: 0 CustomerArrival@1

1 1 queueLength: 1
CustomerDeparture@4,
CustomerArrival@4

2 4 queueLength: 1
CustomerDeparture@6,
CustomerArrival@7

3 6 queueLength: 0 CustomerArrival@7

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 11

https://sim4edu.com/oesjs/core0/Service-Desk-0/index.html

 Tutorial: Discrete Event Simulation with OESjs-Core1

Step Time System State Future Events

4 7 queueLength: 1
CustomerDeparture@11,
CustomerArrival@13

5 11 queueLength: 0 CustomerArrival@13

6 13 queueLength: 1
CustomerDeparture@15,
CustomerArrival@19

7 15 queueLength: 0 CustomerArrival@19

...

49 114 queueLength: 0 CustomerArrival@117

50 117 queueLength: 1
CustomerArrival@118,
CustomerDeparture@119

51 118 queueLength: 2
CustomerDeparture@119,
CustomerArrival@119

52 119 queueLength: 2
CustomerArrival@121,
CustomerDeparture@123

53 121 queueLength: 3
CustomerDeparture@123,
CustomerArrival@124

54 123 queueLength: 2
CustomerArrival@124,
CustomerDeparture@126

55 124 queueLength: 3
CustomerArrival@125,
CustomerDeparture@126

56 125 queueLength: 4
CustomerDeparture@126,
CustomerArrival@128

57 126 queueLength: 3
CustomerArrival@128,
CustomerDeparture@128

58 128 queueLength: 3
CustomerArrival@129,
CustomerDeparture@131

59 129 queueLength: 4
CustomerDeparture@131,
CustomerArrival@133

60 131 queueLength: 3
CustomerArrival@133,
CustomerDeparture@135

61 133 queueLength: 4
CustomerDeparture@135,
CustomerArrival@137

62 135 queueLength: 3
CustomerArrival@137,
CustomerDeparture@137

63 137 queueLength: 3
CustomerArrival@139,
CustomerDeparture@141

64 139 queueLength: 4
CustomerDeparture@141,
CustomerArrival@142

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 12

 Tutorial: Discrete Event Simulation with OESjs-Core1

Step Time System State Future Events

65 141 queueLength: 3
CustomerArrival@142,
CustomerDeparture@144

66 142 queueLength: 4
CustomerDeparture@144,
CustomerArrival@147

67 144 queueLength: 3
CustomerArrival@147,
CustomerDeparture@148

68 147 queueLength: 4
CustomerDeparture@148,
CustomerArrival@148

69 148 queueLength: 4
CustomerArrival@149,
CustomerDeparture@151

70 149 queueLength: 5
CustomerDeparture@151,
CustomerArrival@151

...

2.2.2. Object Types

Object types are defined in the form of classes. Consider the object type ServiceDesk defined in the following
Service-Desk-1 model:

«rv» serviceTime() : Integer {Freq{2:0.3, 3:0.5, 4:0.2}}

queueLength : NonNegativeInteger

«object type»
ServiceDesk

«rv» recurrence() : Integer {U(1-6)}

«exogenous event type»
Arrival

serviceTime : PositiveInteger

«caused event type»
Departure

1

*

*

While queueLength was defined as a global variable in the Service-Desk-0 model, it is now defined as an
attribute of the object type ServiceDesk:

class ServiceDesk extends oBJECT {

 constructor({ id, name, queueLength}) {

 super(id, name);

 this.queueLength = queueLength;

 }

 static serviceTime() {

 var r = math.getUniformRandomInteger(0, 99);

 if (r < 30) return 2; // probability 0.3

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 13

 Tutorial: Discrete Event Simulation with OESjs-Core1

 else if (r < 80) return 3; // probability 0.5

 else return 4; // probability 0.2

 }

}

ServiceDesk.labels = {"queueLength":"qLen"}; // for the log

Notice that, in OESjs, object types are defined as subtypes of the pre-defined class oBJECT, from which they
inherit an integer-valued id attribute and an optional name attribute. When a property has a label (defined by
the class-level (map-valued) property labels), it is shown in the simulation log.

You can run this simulation model from the project's GitHub website.

2.2.3. Event Types

In OES, there is a distinction between two kinds of events:

1. events that are caused by other event occurrences during a simulation run;

2. exogenous events that seem to happen spontaneously, but may be caused by factors, which are external
to the simulation model.

Here is an example of an exogenous event type definition in OESjs-Core1:

class CustomerArrival extends eVENT {

 constructor({ occTime, serviceDesk}) {

 super(occTime);

 this.serviceDesk = serviceDesk;

 }

 onEvent() {

 ...

 }

 ...

}

The definition of the CustomerArrival event type includes a reference property serviceDesk, which is used for
referencing the service desk object at which a customer arrival event occurs. In OESjs, event types are defined
as subtypes of the pre-defined class eVENT, from which they inherit an attribute occTime, which holds the
occurrence time of an event. As opposed to objects, events do normally not have an ID, nor a name.

Each event type needs to define an onEvent method that implements the event rule for events of the defined
type. Event rules are discussed below.

Exogenous events occur periodically. They are therefore defined with a recurrence function, which provides
the time in-between two events (often in the form of a random variable). The recurrence function is defined as a
class-level ("static") method:

class CustomerArrival extends eVENT {

 ...

 static recurrence() {

 return math.getUniformRandomInteger(1, 6);

 }

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 14

https://sim4edu.com/oesjs/core0/Service-Desk-1/index.html

 Tutorial: Discrete Event Simulation with OESjs-Core1

}

Notice that the recurrence function of CustomerArrival is coded with the library method
math.getUniformRandomInteger, which allows sampling from discrete uniform probability distribution
functions.

In the case of an exogenous event type definition, a createNextEvent method has to be defined for assigning
event properties and returning the next event of that type, which is scheduled by invoking the recurrence
function for setting its ocurrenceTime and by copying all participant references (such as the serviceDesk
reference).

class CustomerArrival extends eVENT {

 ...

 createNextEvent() {

 return new CustomerArrival({

 occTime: this.occTime + CustomerArrival.recurrence(),

 serviceDesk: this.serviceDesk

 });

 }

 static recurrence() {...}

}

When an OE simulator processes an exogenous event e of type E, it automatically schedules the next event of
type E by invoking the createNextEvent method on e, if it is defined, or, otherwise by duplicating e and resetting
its occurrence time by invoking E.recurrence().

For an exogenous event type, it is an option to define a maximum number of event occurrences by setting the
static attribute maxNmrOfEvents, as in the following example:

CustomerArrival.maxNmrOfEvents = 3;

The second event type of the Service-Desk-1 model, Departure, is an example of a type of caused events:

class CustomerDeparture extends eVENT {

 constructor({ occTime, serviceDesk}) {

 super(occTime);

 this.serviceDesk = serviceDesk;

 }

 onEvent() {

 ...

 }

}

A caused event type does neither define a recurrence function nor a createNextEvent method.

2.2.4. Event Rules

An event rule for an event type defines what happens when an event of that type occurs, by specifying the
caused state changes and follow-up events. In OESjs, event rules are coded as onEvent methods of the class

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 15

 Tutorial: Discrete Event Simulation with OESjs-Core1

that implements the event type. These methods return a set of events (more precisely, a set of JS objects
representing events).

Notice that in the DES literature, event rule methods are called event routines.

For instance, in the CustomerArrival class, the following event rule method is defined:

class CustomerArrival extends eVENT {

 ...

 onEvent() {

 var followupEvents=[];

 // increment queue length due to newly arrived customer

 this.serviceDesk.queueLength++;

 // update statistics

 sim.stat.arrivedCustomers++;

 if (this.serviceDesk.queueLength > sim.stat.maxQueueLength) {

 sim.stat.maxQueueLength = this.serviceDesk.queueLength;

 }

 // if the service desk is not busy

 if (this.serviceDesk.queueLength === 1) {

 followupEvents.push(new CustomerDeparture({

 occTime: this.occTime + ServiceDesk.serviceTime(),

 serviceDesk: this.serviceDesk

 }));

 }

 return followupEvents;

 }

}

The context of this event rule method is the event that triggers the rule, that is, the variable this
references a JS object that represents the triggering event. Thus, the expression this.serviceDesk
refers to the service desk object associated with the current customer arrival event, and the statement
this.serviceDesk.queueLength++ increments the queueLength attribute of this service desk object (as an
immediate state change).

The following event rule method is defined in the CustomerDeparture class.

class CustomerDeparture extends eVENT {

 ...

 onEvent() {

 var followupEvents=[];

 // decrement queue length due to departure

 this.serviceDesk.queueLength--;

 // update statistics

 sim.stat.departedCustomers++;

 // if there are still customers waiting

 if (this.serviceDesk.queueLength > 0) {

 // start next service and schedule its end/departure

 followupEvents.push(new CustomerDeparture({

 occTime: this.occTime + ServiceDesk.serviceTime(),

 serviceDesk: this.serviceDesk

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 16

 Tutorial: Discrete Event Simulation with OESjs-Core1

 }));

 }

 return followupEvents;

 }

}

2.2.5. Event Priorities

An OES model may imply the possibility of several events occurring at the same time. Consequently, a
simulator (like OESjs) must be able to process simultaneous events. In particular, simulation models based on
discrete time may create simulation states where two or more events occur at the same time, but the model's
logic requires them to be processed in a certain order. Defining priorities for events of a certain type helps to
control the processing order of simultaneous events.

Consider an example model based on discrete time with three exogenous event types StartOfMonth, EachDay
and EndOfMonth, where the recurrence of StartOfMonth and EndOfMonth is 21, and the recurrence of EachDay
is 1. In this example we want to control that on simulation time 1 + i * 21 both a StartOfMonth and an EachDay
event occur simultaneously, but StartOfMonth should be processed before EachDay, and on simulation time
21 + i * 21 both an EndOfMonth and an EachDay event occur simultaneously, but EndOfMonth should be
processed after EachDay. This can be achieved by defining a high priority, say 2, to StartOfMonth, a middle
priority, say 1, to StartOfMonth, and a low priority, say 0, to EndOfMonth.

Event priorities are defined as class-level properties of event classes in the event type definition file. Thus, we
would define in StartOfMonth.js:

StartOfMonth.priority = 2;

and in EachDay.js:

EachDay.priority = 1;

and finally in EndOfMonth.js:

EndOfMonth.priority = 0;

2.2.6. Library Methods for Sampling Probability Distribution Functions

Random variables are implemented as methods that sample specific probability distribution functions (PDFs).
Simulation frameworks typically provide a library of predefined parametrized PDF sampling methods, which
can be used with one or several (possibly seeded) streams of pseudo-random numbers.

The OESjs simulator provides the following predefined parametrized PDF sampling methods:

Probability
Distribution Function

OESjs Library Method Example

Uniform
uniform(lowerBound,
upperBound)

rand.uniform(0.5, 1.5)

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 17

https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

 Tutorial: Discrete Event Simulation with OESjs-Core1

Probability
Distribution Function

OESjs Library Method Example

Discrete Uniform
uniformInt(lowerBound,
upperBound)

rand.uniformInt(1, 6)

Triangular
triangular(lowerBound,
upperBound, mode)

rand.triangular(0.5,

1.5, 1.0)

Frequency frequency(frequencyMap)
rand.frequency({"2":0.4,

"3":0.6})

Exponential exponential(eventRate) rand.exponential(0.5)

Gamma gamma(shape, scale) rand.gamma(1.0, 2.0)

Normal normal(mean, stdDev) rand.normal(1.5, 0.5)

Pareto pareto(shape) rand.pareto(2.0)

Weibull weibull(scale, shape) rand.weibull(1, 0.5)

The OESjs library rand.js supports both unseeded and seeded random number streams. By default, its PDF
sampling methods are based on an unseeded stream, using Marsaglia’s high-performance random number
generator xorshift that is built into the Math.random function of modern JavaScript engines.

A seeded random number stream, based on David Bau's seedable random number generator seedrandom, can be
obtained by setting the scenario parameter sim.scenario.randomSeed to a positive integer value.

Additional streams can be defined and used in the following way:

var stream1 = new Random(1234);

var stream2 = new Random(6789);

var service1Duration = stream1.exponential(0.5);

var service2Duration = stream2.exponential(1.5);

WARNING

Avoid using JavaScript's built-in Math.random in simulation code. Always use

rand.uniform, or one of the other sampling functions from the rand.js library

described above, for generating random numbers.

Otherwise, using a random seed does not guarantee reproducible simulation runs!

2.3. Simulation Scenarios

For obtaining a complete executable simulation scenario, a simulation model has to be complemented with
simulation parameter settings and an initial system state.

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 18

https://en.wikipedia.org/wiki/Discrete_uniform_distribution
https://en.wikipedia.org/wiki/Triangular_distribution
https://en.wikipedia.org/wiki/Triangular_distribution
http://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Pareto_distribution
https://en.wikipedia.org/wiki/Weibull_distribution
https://en.wikipedia.org/wiki/Xorshift
https://github.com/davidbau/seedrandom

 Tutorial: Discrete Event Simulation with OESjs-Core1

In general, we may have more than one simulation scenario for a simulation model. For instance, the same
model could be used in two different scenarios with different initial states.

An OESjs simulation scenario consists of

1. a simulation model;

2. simulation parameter settings, such as setting a value for durationInSimTime and randomSeed; and

3. an initial state definition.

An empty template for the simulation.js file has the following structure:

// ***** Simulation Model *******************

sim.model.time = "..."; // discrete or continuous

sim.model.timeIncrement = ...; // optional

sim.model.timeUnit = "..."; // optional (ms|s|min|hour|day|week|month|year)

sim.model.v.aModelVariable = ...; // (developer-defined) model variables

sim.model.f.aModelFunction = ...; // (developer-defined) model functions

sim.model.p.aModelParameter = ...; // (developer-defined) model parameters

sim.model.objectTypes = [...]; // (developer-defined) object types

sim.model.eventTypes = [...]; // (developer-defined) event types

// ***** Simulation Parameters **************

sim.scenario.durationInSimTime = ...;

sim.scenario.randomSeed = ...; // optional

// ***** Initial State **********************

sim.scenario.setupInitialState = function () {

 // Initialize model variables

 ...

 // Create initial objects

 ...

 // Schedule initial events

 ...

};

// ***** Ex-Post Statistics *****************

sim.model.statistics = {...};

We briefly discuss each group of scenario information items in the following sub-sections.

2.3.1. Model Parameters

While model variables are state variables whose values are changed as an effect of an event occurrence, model
parameters are not part of the dynamic state of the simulated system, but are rather used for providing values
that can only be read during a simulation run. The main purpose of model parameters is to allow parameter
variation experiments.

2.3.2. Simulation Scenario Parameters

A few simulation parameters are predefined as attributes of the simulation scenario. The most important ones
are:

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 19

 Tutorial: Discrete Event Simulation with OESjs-Core1

• durationInSimTime - this attribute allows defining the duration of a simulation run; which runs forever
when this attribute s not set;

• randomSeed: Setting this optional parameter to a positive integer allows to obtain a specific fixed random
number sequence (generated by a random number generator). This can be used for performing simulation
runs with the same (repeated) random number sequence, e.g., for testing a simulation model by checking if
expected results are obtained.

2.3.3. Initial State

Defining an initial state means:

1. assigning initial values to global model variables, if there are any;

2. defining which objects exist initially, and assigning initial values to their properties;

3. defining which events are scheduled initially.

A setupInitialState procedure takes care of these initial state definitions. A global model variable is
initialized in the following way:

sim.scenario.setupInitialState = function () {

 // Initialize model variables

 sim.model.v.queueLength = 0;

 // Create initial objects

 ...

 // Schedule initial events

 ...

};

An initial state object is created by instantiating an object type of the simulation model with suitable initial
property values, as shown in the following example:

sim.scenario.setupInitialState = function () {

 // Initialize model variables

 ...

 // Create initial objects

 const serviceDesk1 = new ServiceDesk({id: 1, queueLength: 0});

 // Schedule initial events

 ...

};

Notice that object IDs are positive integers.

Instead of assigning a fixed value to a property like queueLength for defining an object's initial state, as in
queueLength: 0, we can also assign it an expression, as in queueLength: Math.round(12/30).

An initial event is scheduled (or added to the Future Events List), as shown in the following example:

sim.scenario.setupInitialState = function () {

 // Initialize model variables

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 20

 Tutorial: Discrete Event Simulation with OESjs-Core1

 ...

 // Create initial objects

 const desk1 = new ServiceDesk({id: 1, queueLength: 0});

 // Schedule initial events

 sim.schedule(new CustomerArrival({occTime:1, serviceDesk: desk1}));

};

Initial objects or events can be parametrized with the help of model parameters.

2.3.4. Defining Alternative Scenarios with Different Initial States

For running a model on top of different initial states, one can define a list of scenarios, each with its own
setupInitialState procedure:

sim.scenarios[1] = {

 scenarioNo: 1,

 title: "Scenario with two service desks",

 setupInitialState: function () {

 // Create initial objects

 var sD1 = new ServiceDesk({id: 1, queueLength: 0}),

 sD2 = new ServiceDesk({id: 2, queueLength: 0});

 // Schedule initial events

 sim.FEL.add(new CustomerArrival({occTime: 1, serviceDesk: sD1}));

 sim.FEL.add(new CustomerArrival({occTime: 2, serviceDesk: sD2}));

 }

};

sim.scenarios[2] = {...}

Before running a simulation, a specific scenario can be chosen in the user interface.

WARNING

Do not set model parameters in the setupInitialState procedure! This would

interfere with parameter variation experiments in which the same parameter(s) are

used.

2.4. Statistics

In scientific and engineering simulation projects the main goal is getting estimates of the values of certain
variables or performance indicators with the help of statistical methods. In educational simulations, statistics can
be used for observing simulation runs and for learning the dynamics of a simulation model.

For collecting statistics, suitable statistics variables have to be defined, as in the following example:

sim.model.setupStatistics = function () {

 sim.stat.arrivedCustomers = 0;

 sim.stat.departedCustomers = 0;

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 21

 Tutorial: Discrete Event Simulation with OESjs-Core1

 sim.stat.maxQueueLength = 0;

};

Statistics variables have to be updated in onEvent methods. For instance, the variables arrivedCustomers and
maxQueueLength are updated in the onEvent method of the CustomerArrival event class:

class CustomerArrival extends eVENT {

 ...

 onEvent() {

 ...

 // update statistics

 sim.stat.arrivedCustomers++;

 if (this.serviceDesk.queueLength > sim.stat.maxQueueLength) {

 sim.stat.maxQueueLength = this.serviceDesk.queueLength;

 }

 ...

 }

}

In certain cases, a statistics variable can only be computed at the end of a simulation run. For this purpose, there
is the option to define a computeFinalStatistics procedure:

sim.model.computeFinalStatistics = function () {

 // percentage of business days without stock-outs

 sim.stat.serviceLevel = (sim.time - sim.stat.nmrOfStockOuts) / sim.time * 100;

};

After running a simulation scenario, the statistics results are shown in a table:

Table 2-2. Statistics

arrivedCustomers 289

departedCustomers 288

maxQueueLength 4

2.5. Time Series

It is often desirable to observe the changes of a variable's value over time by looking at a temporal sequence of
the values of a variable called a time series. Typically, a time series is plotted in a chart.

In OESjs, you can create a time series chart for a statistics variable or for an attribute of a specific object by
assigning a corresponding definition to sim.model.timeSeries in simulation.js like so:

1

2

3

4

sim.model.timeSeries = {

 "order quantity": {statisticsVariable: "orderQuantity"},

 "liquidity": {objectId:1, attribute:"liquidity"}

};

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 22

 Tutorial: Discrete Event Simulation with OESjs-Core1

2.6. Simulation Experiments

There are different types of simulation experiments. In a simple experiment, a simulation scenario is run
repeatedly by defining a number of replications (iterations) for being able to compute average statistics.

In a parameter variation experiment, several variants of a simulation scenario (called experiment scenarios), are
defined by defining value sets for certain model parameters (the experiment parameters), such that a parameter
variation experiment run consists of a set of experiment scenario runs, one for each combination of parameter
values.

An experiment type is defined for a given simulation model and an experiment of that type is run on top of a
given simulation scenario for that model.

When running an experiment, the resulting statistics data are stored in a database, which allows looking them up
later on or exporting them to data analysis tools (such as Microsoft Excel and RStudio)

Simple Experiments

A simple experiment type is defined with a sim.experimentType record on top of a model by defining (1)
the number of replications and (2) possibly a list of seed values, one for each replication. The following code
shows an example of a simple experiment type definition:

1

2

3

4

5

sim.experimentType = {

 title: "Simple Experiment with 10 replications, each running for 1000 time units (days)",

 nmrOfReplications: 10,

 seeds: [123, 234, 345, 456, 567, 678, 789, 890, 901, 1012]

};

Running this simple experiment means running the underlying scenario 10 times, each time with another
random seed, as specified by the list of seeds. The resulting statistics are composed of the statistics for each
replication complemented with summary statistics listing averages, standard deviations, min/max values and
95% confidence intervals, as shown in the following example:

Experiment Results

Statistics
Replication

arrivedCustomers departedCustomers maxQueueLength

1 285 283 7

2 274 274 6

3 285 285 4

4 287 286 5

5 284 284 6

6 300 299 4

7 288 286 5

8 286 284 4

9 286 285 4

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 23

 Tutorial: Discrete Event Simulation with OESjs-Core1

Experiment Results

Statistics
Replication

arrivedCustomers departedCustomers maxQueueLength

10 295 293 6

Average 287 285.9 5.1

Std.dev. 6.848 6.506 1.101

Minimum 274 274 4

Maximum 300 299 7

CI Lower 282.9 281.9 4.4

CI Upper 291 289.6 5.7

When no seeds are defined, the experiment is run with implicit random seeds using JavaScript's built-in random
number generator, which implies that experiment runs are not reproducible.

Parameter Variation Experiments

A parameter variation experiment is defined with (1) a number of replications, (2) a list of seed values (one for
each replication), and (3) one or more experiment parameters.

An experiment parameter must have the same name as the model parameter to which it refers. It defines a set of
values for this model parameter, either using a values field or a combination of a startValue and endValue
field (and stepSize for a non-default increment value) as in the following example.

The following code shows an example of a parameter variation experiment definition (on top of the Inventory-
Management simulation model):

1

2

3

4

5

6

7

8

9

10

11

sim.experimentTypes[1] = {

 id: 1,

 title: "Parameter variation experiment for exploring reorderInterval and targetInventory",

 nmrOfReplications: 10,

 seeds: [123, 234, 345, 456, 567, 678, 789, 890, 901, 1012],

 parameterDefs: [

 {name:"reviewPolicy", values:["periodic"]},

 {name:"reorderInterval", values:[2,3,4]},

 {name:"targetInventory", startValue:80, endValue:100, stepSize:10},

]

};

Notice that this experiment definition defines 9 experiment scenarios resulting from the combinations of the
values 2/3/4 and 80/90/100 for the parameters reorderInterval and targetInventory. Running this parameter
variation experiment means running each of the 9 experiment scenarios 10 times (each time with another
random seed, as specified by the list of seeds). The resulting statistics, as shown in the following table, is
computed by averaging all statistics variables defined for the given model.

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 24

https://sim4edu.com/oesjs/core1/Inventory-Management/index.html
https://sim4edu.com/oesjs/core1/Inventory-Management/index.html

 Tutorial: Discrete Event Simulation with OESjs-Core1

Experiment Results

StatisticsExperiment
scenario

Parameter values
nmrOfStockOuts lostSales serviceLevel

0 periodic,2,80 21.8 180.7 97.82

1 periodic,2,90 7.4 55.9 99.26

2 periodic,2,100 2.1 15.8 99.79

3 periodic,3,80 86.6 855.6 91.34

4 periodic,3,90 40.6 377.5 95.94

5 periodic,3,100 16.3 139.8 98.37

6 periodic,4,80 171.5 2067.5 82.85

7 periodic,4,90 110.6 1238.3 88.94

8 periodic,4,100 63.8 661.4 93.62

Storage and Export of Experiment Results

In OESjs-Core1, an experiment's output statistics data is stored in a browser-managed database using
JavaScript's IndexedDB technology. The name of this database is the same as the name of the simulation model.
It can be inspected with the help of the browser's developer tools, which are typically activated with the key
combination [Shift]+[Ctrl]+[I]. For instance, in Google's Chrome browser, one has to go to Application/Storage/
IndexedDB.

The experiment statistics database consists of three tables containing data about (1) experiment runs, (2)
experiment scenarios, and (3) experiment scenario runs, which can be exported to a CSV file.

2.7. Using the Simulation Log

The OESjs-Core1 simulator can generate a simulation log, which allows to inspect the evolving states of a
simulation run. Inspecting the simulation log can help to understand the dynamics of a model, or it can be used
for finding logical flaws in it.

The contents of the simulation log can be controlled by defining labels for those object properties that are to
be displayed in the log. For instance, in the case of the Service-Desk-1 model, a label "qLen" is defined for the
queueLength property of ServiceDesk objects by setting

ServiceDesk.labels = {"queueLength":"qLen"};

This results in the following simulation log:

Step Time System State Future Events

0 0
Service-Desk-1{ qLen:
0}

CustomerArrival@1

1 1
Service-Desk-1{ qLen:
1}

CustomerDeparture@5,
CustomerArrival@6

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 25

https://sim4edu.com/oesjs/core1/Service-Desk-1/index.html

 Tutorial: Discrete Event Simulation with OESjs-Core1

Step Time System State Future Events

2 5
Service-Desk-1{ qLen:
0}

CustomerArrival@6

3 6
Service-Desk-1{ qLen:
1}

CustomerArrival@7,
CustomerDeparture@10

4 7
Service-Desk-1{ qLen:
2}

CustomerDeparture@10,
CustomerArrival@10

5 10
Service-Desk-1{ qLen:
2}

CustomerArrival@12,
CustomerDeparture@13

6 12
Service-Desk-1{ qLen:
3}

CustomerDeparture@13,
CustomerArrival@16

7 13
Service-Desk-1{ qLen:
2}

CustomerArrival@16,
CustomerDeparture@16

8 16
Service-Desk-1{ qLen:
2}

CustomerDeparture@19,
CustomerArrival@21

9 19
Service-Desk-1{ qLen:
1}

CustomerArrival@21,
CustomerDeparture@23

2.8. Observation and User Interaction

Being able to observe a simulation run with the help of visualization (and sonification) is important for
educational simulations and games, but it can also be used as a general tool for testing, inspecting and validating
simulations. Both objects and events by can be visualized, while events can also be sonified. A simulation can
be turned into an even more immersive experience by allowing human users to interact with the simulated
world.

OESjs allows adding the following user interfaces (UI) to a simulation model:

1. An observation UI defines various kinds of visualizations (including 3D) for allowing the user to
observe what is going on during a simulation run. Space models, objects and events can be visualized
by defining views for them. An object view is defined by a 2D shape (like a circle or a polygon) or a
3D shape (like a sphere or a mesh). An event view consists of a Web Animation of one or more DOM
elements using key frames. Events can also be sonified by attaching specific sounds to event occurrences
in an event appearance definition.

2. A user interaction UI allows human users to interact with a running simulation by taking decisions on
the values of decision variables or by taking actions that change the value of certain simulation variables.

3. A participation UI allows human users to participate in a multi-agent simulation scenario by taking
over an agent for receiving situational information and performing in-world actions via the user
interface. Any multi-agent simulation model can be turned into a user-interactive participatory
simulation by adding a participation model and a corresponding UI.

How to define an observation UI or a user interaction UI is described in the next chapter.

 Chapter 2. Creating Object Event Simulations with OESjs-Core1 26

 Tutorial: Discrete Event Simulation with OESjs-Core1

Chapter 3. Simulation Programming with OESjs

Using a simulation framework like OESjs means that only the model-specific logic has to be coded (in the form
of object types, event types, event routines and other functions for model-specific computations), but not the
general simulator operations (e.g., time progression and statistics) and the environment handling (e.g., user
interfaces for statistics output and visualization).

The following sections present important simulation programming issues.

3.1. Accessing Objects

The objects defined in the initial state, or created during a simulation run, can be accessed either by their ID
number or by their name, if they have one. For instance, the object with { id: 1, name:"serviceDesk1", ...} has
the ID number 1 and the name "serviceDesk1". It can be retrieved by ID from the collection sim.objects (a
JS Map) in the following way:

var object1 = sim.objects.get(1);

It can also be retrieved by name from the collection sim.namedObjects (also a JS Map) in the following way:

var object1 = sim.namedObjects.get("serviceDesk1");

For looping over all simulation objects, we can loop over the collection sim.objects in the following way:

for (const obj of sim.objects.values()) {

 ... // do something with obj

}

We can loop over all simulation objects of a specific type, say ServiceDesk, in the following way:

for (const objIdStr of Object.keys(sim.Classes["ServiceDesk"].instances)) {

 const obj = sim.Classes["ServiceDesk"].instances[objIdStr];

 ... // do something with obj

}

Here, sim.Classes provides a map from class names to classes, which are special JS objects, such that for a
class C, the collection C.instances (a JS map/object) provides a map from object IDs to JS objects. Thus, the
expression Object.keys(sim.Classes["ServiceDesk"].instances) represents an array/list of object
ID strings, namely the keys of the map sim.Classes["ServiceDesk"].instances.

3.2. Defining and Using a History Attribute

There are use cases which require to construct a history of the changing values of a certain attribute for a
specific object and evaluate or simply display this history. For example, we may define a history attribute
temperatureHistory in addition to the attribute temperature for recording the history of average daily
temperatures:

class LemonadeMarket extends DailyDemandMarket {

 constructor({id, name, temperature}) {

 Chapter 3. Simulation Programming with OESjs 27

 Tutorial: Discrete Event Simulation with OESjs-Core1

 super({id, name});

 this.temperature = temperature;

 this.temperatureHistory = new RingBuffer();

 this.temperatureHistory.add(temperature);

 }

The value of such a history attribute is a ring buffer, having a limited size and an add operation for adding new
items to the buffer as in the last constructor statement above.

Notice that the oldest item of such a buffer may get lost when the buffer is already full and a new item is added.

The value of a history attribute can be converted to a string with the help of the expression

sim.namedObjects["lemonadeMarket"].temperatureHistory.toString()

 Chapter 3. Simulation Programming with OESjs 28

 Tutorial: Discrete Event Simulation with OESjs-Core1

Chapter 4. Defining User Interfaces

The OESjs simulation framework allows defining user interfaces for various purposes on top of a simulation
model:

1. A model parameter UI allows the user to modify the values of parameters without changing the
simulation code.

2. An initial state UI allows modifying the attribute values of initial objects and events.

3. An observation UI allows defining views for objects and events (and sounds for events) such that they
can be visualized (and sonified) during a simulation run.

4. A user interaction UI allows defining user interactions bound to certain events, such that a simulation
can be turned into a game.

4.1. Defining an Observation User Interface

An observation UI allows defining views for objects and events (and sounds for events) such that they can be
visualized (and sonified) during a simulation run. Since OESjs is a framework for web-based simulation, an
observation UI is based on the following Web technologies: CSS, SVG and Web Animations. For learning more
about SVG shapes and their attributes, see the book chapter Basic Shapes & Paths by Joni Trythall. For learning
more about CSS styling of SVG elements, see Styling And Animating SVGs With CSS by Sara Soueidan.

Visualizing Objects

For being able to observe objects in a simulation run, they have to be visualized in some form. OESjs supports
both the visualization of objects in space in spatial models and of objects in non-spatial models.

In a visualization of a non-spatial model, such as the ServiceDesk-1 model, all object views have to be explicitly
positioned in an observation canvas.

In the case of our ServiceDesk-1 model, we may, for instance, visualize the service desk using either an image
or simply a fixed-size rectangle, and its queue in the form of a growing and shrinking bar.

Two-dimensional visualizations can be obtained by using the web technology of Scalable Vector Graphics
(SVG) in the definition of the observation UI. For defining an observation UI with SVG-based visualization, the
following settings have to be made:

1

2

3

sim.config.obs.ui.type = "SVG";

sim.config.obs.ui.canvas.width = 600;

sim.config.obs.ui.canvas.height = 300;

In addition, one can define a CSS style for the canvas element in the following way, e.g., for setting a
background color or background image:

1 sim.config.obs.ui.canvas.style = "background-color: azure";

Then we can define fixed elements of a visualization, giving each one a name (here: "desk") and defining an
SVG shape with attributes and a CSS style:

 Chapter 4. Defining User Interfaces 29

https://developer.mozilla.org/en-US/docs/Web/API/Web_Animations_API/Using_the_Web_Animations_API
http://svgpocketguide.com/book/#section-2
http://www.smashingmagazine.com/2014/11/styling-and-animating-svgs-with-css/

 Tutorial: Discrete Event Simulation with OESjs-Core1

1

2

3

4

5

6

7

sim.config.obs.ui.fixedElements = {

 "desk": {

 shapeName: "rect",

 shapeAttributes: { x: 350, y: 200, width: 50, height: 30},

 style: "fill:brown; stroke-width:0"

 }

};

The main issue in visualization is to visualize simulation objects by defining suitable views for them and then
map some of their attributes to suitable visual parameters such as color, shape width and height, etc. A view can
be defined either for all instances of an object type or for specific instances only.

For instance, we may want to visualize the waiting line of the object "serviceDesk1" in the form of a rectangle
and map the service desk's queueLength attribute to the width of that rectangle, as in the following object view
definition:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

sim.config.obs.ui.objectViews = {

 "serviceDesk1": { // the name of the object

 visualizationAttributes: ["queueLength"],

 attributesViewItemsRecords: [

 { attributes:["queueLength"],

 viewItems: [// a list of 2 view elements for the object "serviceDesk1"

 {shapeName: "rect", // a rectangle

 shapeAttributes: { // left-upper corner (x,y) as well as width and height

 x: sd => Math.max(0, 330 - sd.queueLength * 20),

 width: sd => Math.min(300, sd.queueLength * 20),

 y: 150, height: 80 },

 style:"fill:yellow; stroke-width:0"},

 {shapeName: "text",

 shapeAttributes: {x: 325, y: 250, textContent: sd => sd.queueLength},

 style: "font-size:14px; text-anchor:middle"}

]

 }

};

Notice that the view consists of two elements: a rectangle and an attached text displaying the queue length.
In the view definition, certain attributes are assigned a fixed value, while others are assigned a JS function
expression, which codes the mapping of object attributes to visual parameters.

Alternatively, instead of defining a view for a specific service desk object, we can also define a view for all
service desk objects, like so

1

2

3

4

5

6

7

8

9

sim.config.obs.ui.objectViews = {

 "ServiceDesk": [// the name of the object type/class

 { shapeName: "rect", // a rectangle defined by

 shapeAttributes: { // left-upper corner (x,y) as well as width and height

 x: function (sd) {return Math.max(0, 330 - sd.queueLength * 20);},

 width: function (sd) {return Math.min(300, sd.queueLength * 20);},

 y: 150, height: 80

 },

 style:"fill:yellow; stroke-width:0"

 Chapter 4. Defining User Interfaces 30

 Tutorial: Discrete Event Simulation with OESjs-Core1

10

11

 }

};

Visualizing Events

4.2. Defining a User Interface for User Interactions

In an event-based simulation, implicit actions bound to events of a certain type can be replaced by user actions,
such that when an event of that type occurs, the simulation halts and the user gets the opportunity to perform
an action (or take a decision) that determines how the simulation is continued. This type of interaction requires
a suitable user interface that allows the user to enter values for action/decision parameters or select one of a
number of possible actions.

A user interaction user interface (UI) allows defining user actions bound to events of a certain type. Such a UI
turns a simulation into a game, or a human-in-the-loop simulation.

For instance, in the simulation of a lemonade stand (as an example of a manufacturing company), there could be
an event type StartOfDay representing the start of a business day at which replenishment decisions have to be
made. While these decisions would be made algorithmically in a normal simulation, a user interaction UI would
allow a human user to make these decisions in a user-interactive (human-in-the-loop) simulation.

A user interaction (UIA) is triggered by a simulation event (of some type, possibly satisfying some condition)
leading to the creation of a modal UIA window and an interruption of the simulation loop by having the browser
wait for user input/actions. The UIA window contains the following UI elements:

1. output fields for informing the user about the current values of critical state variables,

2. input fields allowing the user to enter values for decision variables, and

3. one or more buttons (typically, a "continue" button allows confirming the choices made).

When the user confirms their choice(s) by activating the "continue" button, this triggers an event handler that
restarts the simulator.

 Chapter 4. Defining User Interfaces 31

 Tutorial: Discrete Event Simulation with OESjs-Core1

Appendix A. Simulator Architecture

OES Core 1 adds the following features to OES Core 0:

• fixed-increment time progression

• a seedable random number generator

• a set of sampling functions from various probability distributions (uniform, triangular, normal, exponential,
etc.)

• multiple scenarios per model

• multiple experiment types per model

• model parameters

• parameter variation experiments

• persistent storage and export of experiment results

The OES Core 1 simulator's information architecture is described by the following class diagram, which defines
the names of classes, properties and methods/functions:

setupInitialState()

scenarioNo[0..1] : Integer
title[0..1] : string
durationInSimTime[0..1] : Number
durationInSimSteps[0..1] : Number
durationInCpuSec[0..1] : Number
randomSeed[0..1] : Integer

Scenario

initializeSimulator()
assignModelParameters(in expParSlots : Map)
initScenRun(in seeds : Integer, in expParSlots : Map)
advanceSimulationTime()
runScenario()
runStandaloneScenario()
runSimpleExperiment()
runParVarExperiment()

step[1] : Integer
time[1] : Number
objects[1] : Map<id, Object>
FEL[1] : EventList
stat[1] : Map

Simulator

setupStatistics()
computeFinalStatistics()

time[1] : Enum [DISCR, CONT]
timeUnit[0..1] : Enum [ms, s, ...]
timeIncrement[0..1] : Number
v[0..1] : Map // variables
f[0..1] : Map // functions
p[0..1] : Map // parameters
objectTypes[*] : String
eventTypes[*] : String

Model

1..*
/model 1

1

scenarios*

1
1

1 0..1

title[0..1] : String
nmrOfReplications[1] : Integer
seeds[*] : Integer

ExperimentType

exper.Type

0..1
1

1

experimentTypes*

*

/model 1

name[1] : String
values[1..*] : Number
startValue[0..1] : Number
endValue[0..1] : Number
stepSize[0..1] : Number

ExperimentParamDef

1

parameterDefs

*
uniform(in lb : Number, in ub : Number)
uniformInt(in lb : Integer, in ub : Integer)
normal(in m : Number, in s : Number)
...()

rand

getAutoId() : Integer

id : Integer
dateTime : DateTime
baseScenario : Integer

ExperimentRun

1

*

getAutoId() : Integer

id : Integer
experimentScenarioNo : Integer
parameterValueCombination : Number
outputStatistics : Map

ExperimentScenarioRun

1 *

 Appendix A. Simulator Architecture 32

 Tutorial: Discrete Event Simulation with OESjs-Core1

Index

C

continuous dynamic system, 1

D

discrete dynamic system, 1
discrete event system, 1
dynamic system, 1

E

event routine, 16
event rule, 15
exogenous event, 3

O

occurrence time, 14

P

probability distribution function, 17

R

random number stream, 18
random variable, 3, 17
recurrence, 3, 14

S

simultaneous events, 17

 i

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction to Object Event Modeling
	1.1. Making a Conceptual Model of the System under Investigation
	1.2. Making a Simulation Design Model

	2. Creating Object Event Simulations with OESjs-Core1
	2.1. Simulation Time
	2.2. Simulation Models
	2.3. Simulation Scenarios
	2.4. Statistics
	2.5. Time Series
	2.6. Simulation Experiments
	2.7. Using the Simulation Log
	2.8. Observation and User Interaction

	3. Simulation Programming with OESjs
	3.1. Accessing Objects
	3.2. Defining and Using a History Attribute

	4. Defining User Interfaces
	4.1. Defining an Observation User Interface
	4.2. Defining a User Interface for User Interactions

	A. Simulator Architecture
	Index

