Tutorial: Discrete Event
Simulation with OESjs-Corel

KSR ¢

How to create and run simulations with the JavaScript-based simulation
framework OESs Corel available from the OES GitHub repo

Gerd Wagner G.Wagner@b-tu.de

Copyright © 2020-23 Gerd Wagner (CC BY-NC)
Published 2023-01-31
AvailableasHTML and PDF.
Abstract

Thistutorial article explains how to use the OESjs Corel simulation framework, which implements an
architecture for Object Event Simulation (OES), extending the OESjs Core O framework by adding fixed-
increment time progression, a seedable random number generator, a set of sampling functions from various
probability distributions (uniform, triangular, normal, exponential, etc.), multiple scenarios per model, multiple
experiment types per model, model parameters, parameter variation experiments, aswell as persistent storage
and export of experiment results.

https://www.facebook.com/sharer.php?u=https://sim4edu.com/oesjs/core1/tutorial.html
https://twitter.com/intent/tweet?url=https://sim4edu.com/oesjs/core1/tutorial.html&text=Tutorial:%20Discrete%20Event%20Simulation%20with%20OESjs-Core1
https://www.linkedin.com/shareArticle?mini=true&url=https://sim4edu.com/oesjs/core1/tutorial.html
mailto:?subject=Tutorial:%20Discrete%20Event%20Simulation%20with%20OESjs-Core1&body=This%20article%20shows%20how%20to%20create%20and%20run%20a%20simulation%20model%20with%20the%20JavaScript-based%20simulation%20framework%20OESjs-Core1%20available%20on%20Sim4edu.com.%20OESjs-Core1%20implements%20the%20Object%20Event%20Simulation%20paradigm%2C%20representing%20a%20general%20Discrete%20Event%20Simulation%20approach%20based%20on%20object-oriented%20modeling%20and%20event%20scheduling.%0A%0Ahttps://sim4edu.com/oesjs/core1/tutorial.html
https://sim4edu.com/oesjs/core1/
https://github.com/gwagner57/oes/blob/master/OESjs-Core1.zip
mailto:G.Wagner@b-tu.de
https://creativecommons.org/licenses/by-nc/4.0/
https://sim4edu.com/oesjs/core1/tutorial.html
https://sim4edu.com/oesjs/core1/tutorial.pdf

Tutorial: Discrete Event Simulation with OESjs-Corel

Table of Contents

LSt OF FIQUIES ...ttt ettt b e b bt e et b et b et b e e b e s e eb e se b e s e eb e s e e bt s e e bt s b e st e b et et et ebeneebe e ii
LI o 1= o] = S SESTTT RS UTTS ST iii
1. Introduction to Object EVENt MOGEIINGcoveieiiicisisc ettt s neene s s 1
1.1. Making a Conceptual Model of the System under INVESLIGationccoecererreinennesreee e 2
1.2. Making a Simulation DEeSIgN MOTE!coiiiiieie e s r e sre e 2
2. Creating Object Event Simulations With OESS-COIELcocviiieirieeirereeesiese st 8
P20 S 1 = (g T T =SSR 9
2.2. SIMUIBLTION MOGEIS ..ottt ettt b e 11
2.3, SIMUIBLION SCENAITOS ...eeueiieuieiereeieetesie st sttt et e e e et ese e e et esesbesbesbesbesbesaessentesee e eneeneeneeseebessesrenseseeseens 18
p S = T ox ST P PRSP 21
2.5, THIME SEITES ...ttt h bt b e bt e h e h bRt Rt e bbbt e b e bt e bt b e e e 22
2.6, SIMUIBLTON EXPEITIMENTS ...o.viuiiiiiiiieiiteesieeet ettt sttt b e b e b et b e bbb et se b e e be e b s 23
2.7. USING the SIMUIGLION LOQ ..eveiviveiieieiieieseeeeeeeee e e st ste e tesaeste e sae e esae s e e eseesessessestessessestesteseessensenes 25
2.8. Observation and USer INEEIECHIONcoeiieiereiirese e e e sie ettt s ee et eese e e e e e e e e eneenes 26
3. Simulation Programming With OESJSccceiiiriiirinieree ettt st st s ebe s e sae e seeneas 27
3.1 ACCESSING ODJECES ...ttt b e bt bt e bbb e et et et e e e e et et ebeeaeeaeebenbesaenaens 27
3.2. Defining and Using a HiStory AIIDULEo.oviiiiiieeeeet s 27
F = T o TE g Lo T L= a1 = = o= 29
4.1. Defining an Observation USEr INEEITACEcccoviirieiiirere e s e 29
4.2. Defining a User Interface for USer INLEraCtioNS ..o e 31
AL SIMUIBLOT ATCHITECIUEeiviieeteiiree ettt r e 32
E e (= ST P TSP i

Tutorial: Discrete Event Simulation with OESjs-Corel

List of Figures

1-1. An information design model for SErVICE-DEsK-0cccciriiiiiriee e
1-2. A process design model in the form of an Event Graph, where the state variable Q stands for queuelength

1-3. An information design model for SErVICE-DESK-1ccciriiriirc e
1-4. A process design model in the form of a DPMN Process Diagramcoveereerieenienenenesenesesesiesesieneas

Tutorial: Discrete Event Simulation with OESjs-Corel

List of Tables

2-1. SIMUIBLION LOQ e.etviuertinertiieteseet sttt sttt sttt b e b b e b s ekt e bt e bt e e s b e s e b e e e b e e e bt e eb e b eb e b ebe st e st neenes

2-2. Statistics

Tutorial: Discrete Event Simulation with OESjs-Corel

Chapter 1. Introduction to Object Event Modeling

Simulation is used widely today: in many scientific disciplines for investigating specific research questions, in
engineering for testing the performance of designs, in education for providing interactive learning experiences,
and in entertainment for making games.

Both static systems/structures and dynamic systems can be modeled and simulated. Modeling and simulation
(M&S) of static structures, such as the surface textures of materials, is only an issue in physics and computer
graphics, while M& S of dynamic systemsisanissuein all scientific and engineering disciplines, including
management science, economics and other social sciences.

A dynamic system may be subject to discrete or continuous state changes. For simulating a dynamic system one
has to model

1. thetypes of objectsit is composed of,

2. thetypes of eventsthat cause discrete state changes of objects,

3. the discrete state changes of objects caused by the occurrence of an event of some type,
4. thefollow-up events caused by the occurrence of an event of some type,

5. the continuous state changes of objects (described with the help of differential equations).

A (purely) continuous dynamic system does not include events and their causal effects (list items 2-4), but only
objects that are subject to continuous state changes (list items 1 and 5). A (purely) discrete dynamic system does
not include any continuous state changes of objects (list item 5). Many real-world systemsinclude both discrete
and continuous state changes, in which case they may be called hybrid dynamic systems.

In thistutorial, we are only concerned with discrete state changes. Consequently, we only consider purely
discrete dynamic systems, also called discrete event systems, which consist of:

« objects (of various types) whose states may be changed by

* events (of various types) occurring in a sequence of time points, causing state changes of affected objects
and follow-up events.

This means that for modeling such a system, we have to

1. describeits object types and event types (in an information model);

2. specify, for any event type, the state changes of objects and the follow-up events caused by the
occurrence of an event of that type (in a process model).

Chapter 1. Introduction to Object Event Modeling 1

Tutorial: Discrete Event Simulation with OESjs-Corel

1.1. Making a Conceptual Model of the System under Investigation

i

Let'slook at an example. We model a system of one or more service desks, each of them having its own queue,
as adiscrete event system:

* Customers arrive at a service desk at random times.

If thereis no other customer in front of them, and the service desk is available, they are served
immediately, otherwise they have to queue up in awaiting line.

The duration of services varies, depending on the individual case.

* When a serviceis completed, the customer departs and the next customer is served, if thereis still any
customer in the queue.

The potentially relevant object types of the system under investigation are;

* customers,

* service desks,

¢ waiting lines,

¢ service clerks, if the serviceis performed by (one or more) clerks.

The potentially relevant event types are:

e customer arrivals,
* service starts,
e service terminations,
e customer departures.
1.2. Making a Simulation Design M odel
When making a simulation design based on the conceptual model of the system under investigation, wee need

to abstract away from many items of the conceptual model for obtaining a sufficiently simple design. The right
degree of abstraction depends on the purpose of the model. But abstracting away from too many things may

Chapter 1. Introduction to Object Event Modeling

Tutorial: Discrete Event Simulation with OESjs-Corel

make amodel too unnatural and not sufficiently generic, implying that it cannot be easily extended to model
additional features (such as more than one service desk).

In our example, the purpose of the ssimulation model is to compute the maximum queue length and possibly also
the service utilization. So, we may abstract away from the following object types:

* customers: we don't need any information about individual customers.
« waiting lines: we don't need to know who is next, it's sufficient to know the length of the queue.

* service clerks: we don't need any information about the service clerk(s).

Notice that, for simplicity, we consider the customer that is currently being served to be part of the queue. In
thisway, in the simulation program, we can check if the service desk is busy by testing if the length of the queue
isgreater than 0. In fact, for being able to compute the service utilization and the maximum queue length, the
gueue length is the only relevant state variable.

State variables can be modeled in the simple form of global variables or in the form of attributes of suitable
object types. Consequently, the simplest model we can make for the given problem, called Service-Desk-0,
has only one global variable: queueLength. But, as an alternative, more explicit, model, called Service-Desk-1,
we will also model the system state in terms of (one or more) ServiceDesk objects having only one property:
gueuel ength. As opposed to the simpler model defining queuelength as aglobal variable, this model allows
defining simulation scenarios with two or more service desks operating simultaneously.

We also look for opportunities to simplify our event model by dropping event types that are not needed, e.g.,
because their events temporally coincide with events of another type. Thisisthe case with service terminations
and customer departure events. Consequently, we can drop the event type service terminations.

There are two situations when a new service can be started: either when the waiting line is empty and anew
customer arrives, or when the waiting line is not empty and a service terminates. Therefore, any service start
event immediately follows either a customer arrival or a customer departure event, and we may abstract away
from service start events and drop the corresponding event type from the design model.

So we only need to consider customer arrival and customer departure events, modeled with the two event types
Arrival and Departure.

The event type Arrival is an example of atype of exogenous events, which are not caused by any causal
regularity of the system under investigation and, therefore, have to be modeled with arecurrence function that
allows to compute the time of the next occurrence of an event of that type. In OES, exogenous event types are a
built-in concept such that an OES simulator takes care of creating the next exogenous event whenever an event
of that type is processed. This mechanism makes sure that there is a continuous stream of exogenous events
throughout a simulation run.

We also have to model the random variations of two variables: (1) the recurrence of (that is, the time in-between
two) customer arrival events and (2) the service duration. In a class model, such random variables can be
defined as special class-level ("static") operations, with a stereotype «rv», in the class to which they belong, as
shown in the diagrams below.

We model the recurrence of customer arrival events as a discrete random variable with a uniform distribution
between 1 and 6 minutes, which we express in the class diagram of the information design model by appending
the symbolic expression U{1-6} within curly braces to the operation declaration, following the UML syntax for
property/method modifiers.

Chapter 1. Introduction to Object Event Modeling 3

Tutorial: Discrete Event Simulation with OESjs-Corel

We model the service time random variable with an empirical distribution of 2 minutes with probability 0.3,
3 minutes with probability 0.5 and 4 minutes with probability 0.2, using the symbolic expression Freg{ 2:0.3,
3:0.5, 4:0.2}.

Computationally, object types and event types correspond to classes, either of an object-oriented information
model, such asaUML class diagram, or of acomputer program written in an object-oriented programming
language, such as Java or JavaScript.

1.2.1. Service-Desk-0: Modeling queuelength as a global variable

As discussed above, the simplest model for the service desk problem with maximum queue length statistics
(availablein the Simdedu library as Service-Desk-0) has only one global variable: queuelength, which isanon-
negative integer, and aglobal function for computing the random service time, but no object type.

An information model for Service-Desk-0 consists of a special class for defining model variables and functions,
and two classes for defining the event types Arrival and Departure, as shown in Figure 1-1. An information

design model for Service-Desk-0.

Figure 1-1. An information design model for Service-Desk-0

Global Variablesand Functions
queuel_ength : NonNegativel nteger
«rv» serviceTime() : Integer { Freg{ 2:0.3, 3:0.5, 4.0.2}

«€exogenous event type»
Arrival «caused event type»

Departure

«rv» recurrence() : Integer {U(1-6)}

In addition to an information design model for defining the simulation system's state structure, we also need to
make a process design model for defining the dynamics of the simulation system. The dynamics of a system
consists of events triggering state changes and follow-up events. A process model can be expressed with the
help of event rules, which define what happens when an event (of a certain type) occurs, or, more specifically,
which state changes and which follow-up events are caused by an event of that type.

Event rules can be expressed with the help of a process model diagram or in pseudo-code, or in a simulation or
programming language. The following Event Graph provides a process design model for the Service-Desk-0
simulation scenario. Circles represent events (or, more precisely, event types) and arrows, which may be
annotated with adelay expression, such as +serviceTime(), represent event scheduling relationships. An arrow
with amini-diamond at its source end represents a conditional event scheduling relationship where the condition
is expressed in brackets below or above the arrow.

Chapter 1. Introduction to Object Event Modeling 4

https://sim4edu.com/sims/14

Tutorial: Discrete Event Simulation with OESjs-Corel

Figure 1-2. A process design model in the form of an Event
Graph, where the state variable Q stands for queuelength

[Q>0]

* Q=1]

< > .) 4
y +serviceTime()
{Q:=0} Arrival Departure
{Q++} {Q-}

+recurrence()

Event Graphs have originally been proposed by L. Schruben (1983). Their visual syntax has been improved
and harmonized with the business process modeling language BPMN in the Discrete Event Process Modeling
Notation (DPMN) proposed by Wagner (2018) and more thoroughly described in the book Discrete Event
Simulation Engineering.

The following table shows the two event rules defined by the above Event Graph, expressed in pseudo-code.

ON (event type) DO (event routine)

| NCREMENT queuelengt h
| F queueLength = 1 THEN

Arrival @t
@ sTime : = serviceTine()
SCHEDULE Departure @(t + sTine)
DECREMENT queuelengt h
| F queueLength > 0 THEN
Departure @ t d 9

sTime : = serviceTine()
SCHEDULE Departure @(t + sTine)

1.2.2. Service-Desk-1: Modeling queuelength as an attribute

In our extended model (Service-Desk-1) we represent the state variable queuelength as an attribute of an object
type ServiceDesk. Thisresultsin a model with three classes, the object class ServiceDesk with an attribute
queueLength, and the event classes Arrival and Departure, both with a reference property serviceDesk for
referencing the service desk at which an event occurs. When we also want to compute the service utilization
statistics, we need to add an attribute serviceTime to the Departure class for being able to update the service
utilization statistics when a customer departs.

Both event types, Arrival and Departure, now have a many-to-one association with the object type ServiceDesk.
This expresses the fact that any such event occurs at a particular service desk, which participatesin the event.
This association isimplemented in the form of areference property serviceDesk in each of the two event types,
as shown in Figure 1-3. Aninformation design model for Service-Desk-1.

Chapter 1. Introduction to Object Event Modeling

https://dl.acm.org/citation.cfm?id=358460
https://articles.jsime.org/1/1/Modeling-for-Simulation-Part-I
https://sim4edu.com/reading/des-engineering/
https://sim4edu.com/reading/des-engineering/
https://sim4edu.com/sims/1

Tutorial: Discrete Event Simulation with OESjs-Corel

Figure 1-3. An information design model for Service-Desk-1

«object type»
ServiceDesk

gueuel ength : NonNegativel nteger
«rv» serviceTime() : Integer { Freg{ 2:0.3, 3:0.5, 4:0.2}}}

«€exogenous event type» *
Arrival

«rv» recurrence() : Integer {U(1-6)}

«caused event type»
Departure

serviceTime : Positivelnteger

In addition to an information model, we need to make a process model, which captures the dynamics of the
service desk system consisting of arrival and departure events triggering state changes and follow-up events.
The following DPMN Process Diagram provides a process design model for the Service-Desk-1 simulation
scenario. Asin Event Graphs, circles represent event types and arrows represent event scheduling relationships.
DPMN extends Event Graphs by adding object rectangles, attached to event circles, representing state change
patterns for objects that are affected by events of that type.

Figure 1-4. A process design model in the form of a DPMN Process Diagram

sd: ServiceDesk sd: ServiceDesk
[sd = a.serviceDeskK] [sd = d.serviceDesk]
INCREM sd.queuelength DECREM sd.queuelLength

“ee >

Q<>

+ServiceDesk.serviceTime() d-Departure
. <>
[sd.queuelLength = 1] 4 [sd.queuelLength > 0]

+ServiceDesk.serviceTime()

a:Arrival

The following table shows the two event rules defined by the DPMN diagram, which now account for the fact
that both types of events occur at a particular service desk that is referenced by the event expression parameter
sd.

ON (event type) DO (event routine)

Arrival(sd) @t | NCREMENT sd. queueLengt h

Chapter 1. Introduction to Object Event Modeling

Tutorial: Discrete Event Simulation with OESjs-Corel

ON (event type)

DO (event routine)

with sd : ServiceDesk

| F sd. queueLength = 1 THEN
sTime : = ServiceDesk. serviceTi me()
SCHEDULE Departure(sTime, sd) @t + s

i ne)

Departure(sd) @ t

with sd : ServiceDesk

DECREMENT sd. queuelLengt h

| F sd. queueLength > 0 THEN
sTime : = ServiceDesk. serviceTi ne()
SCHEDULE Departure(sTime, sd) @t + s

i ne)

Chapter 1. Introduction to Object Event Modeling 7

Tutorial: Discrete Event Simulation with OESjs-Corel

Chapter 2. Creating Object Event Simulationswith OES s-Corel

The JavaScript-based simulation framework OES's Corel implements the Object Event Smulation (OES)
paradigm, representing a general Discrete Event Smulation approach based on object-oriented modeling and
event scheduling.

The code of an OESjs Corel simulation consists of (1) the OESjs Corel framework files in the folder
f ramewor k, (2) generadl library filesin thel i b folder and (3) the following files to be created by the simulation
developer:

1. For each object type Obj T, aJScodefile Obj T. j s.
2. For each event type EVIT, aJScodefileEvt T. | s.

3. Asimul ation.j s file defining further parts of the simulation, such as statistics variables and the
initial state.

OESjs Corel supports three forms of simulations:

1. Standalone scenario simulations, which are good for getting a quick impression of a simulation model,
e.g., by checking some simple statistics.

2. Simple simulation experiments, which are defined as a set of replicated simulation scenario runs,
providing summary statistics like mean, standard deviation, minimum/maximum and confidence
intervals for each statistics variable defined in the underlying model.

3. Parameter variation experiments, for which a set of experiment parameters with value sets are defined
such that each experiment parameter corresponds to a model parameter. When an experiment is run,
each experiment parameter value combination defines an experiment scenario, which is run repeatedly,
according to the specified number or replications for collecting statistics.

OESjs Corel alows to define two or more simulation scenarios for a given model. While an experiment type is
defined for agiven model, an experiment of that type is run on top of a specific scenario.

Using asimulation library like OESjs Corel means that only the model-specific logic has to be coded (in the
form of object types, event types, event routines and other functions for model-specific computations), but not
the general simulator operations (e.g., time progression and statistics) and the environment handling (e.g., user
interfaces for statistics output).

The following sections present the basic concepts of the OESjs Corel simulation library.

Chapter 2. Creating Object Event Simulations with OESjs-Corel 8

https://sim4edu.com/oesjs/core1/
https://sim4edu.com/OES

Tutorial: Discrete Event Simulation with OESjs-Corel

Attention

Y ou can download OESjs Corel in the form of a ZIP archive file from the OES
GitHub repo. After extracting the archive on your local disk, you can run any of its
example models by going to itsfolder and loading itsi ndex. ht ml fileinto your
browser. Y ou can create your own model by making a copy of one of the example
model folders and using its code files a s starting point.

Since an OESjs simulation includes a JS worker file for running the simulator in its
own thread separately from the main (user interface) thread, it cannot be run from
thelocal file system without changing the browser's default configuration (due to
the web security policy CORS).

For devel oping OESjs simulations on your computer, you should use Firefox
because its security settings can be easily configured such that it allows
loading JS worker files directly from the local file system by disabling the flag
"strict_origin_policy" specifically for file URLs:

1. Enter "about:config" in the Firefox search bar.
2. Search for "security.fileuri.strict_origin_policy".
3. Disablethis policy by changing its value from trueto false.

This creates only a small security risk because the web security policy called
"CORS" isonly disabled for file URLS, but not for normal URLSs.

For other browsers, like Chrome, you need to install alocal HTTP server and

load your simulation's index.html file from that local server, or run it viathe JS
development tool WebStorm (which has a built-in local server), because the only
option for loading JS worker files from the local file system in Chrome would be
to disable the CORS policy completely (see how to disable CORS in Chrome), but
that would create a more severe security risk and is therefore not recommended.

2.1. Simulation Time

A simulation model has an underlying time maodel, which can be either discrete time, when setting

simnodel .time = "di screte";

or continuous time, when setting

simnodel .tinme = "continuous";

Choosing a discrete time model means that time is measured in steps (with equal durations), and all temporal
random variables used in the model need to be discrete (i.e., based on discrete probability distributions).
Choosing a continuous time model means that one has to define a simulation time granularity, as explained in
the next sub-section.

Chapter 2. Creating Object Event Simulations with OESjs-Corel

https://github.com/gwagner57/oes/blob/master/OESjs-Core1.zip
https://www.freecodecamp.org/news/cors-csp-web-security-concepts-for-developers/
https://windowsreport.com/browser-not-support-cross-origin/

Tutorial: Discrete Event Simulation with OESjs-Corel

In both cases, the underlying simulation time unit can be either left unspecified (e.g., in the case of an abstract
time model), or it can be set to one of the time units"ms", "s", "min", "hour", "day", "week", "month" or "year",
asin

simnodel .timeUnit = "hour";

Typical examples of time models are:

1. An abstract discrete model of time where time runs in steps without any concrete meaning:

simnodel .tinme = "discrete";

2. A concrete discrete model of time in number of days:

simnodel .time = "di screte";
simnodel .timeUnit = "day";

3. A concrete continuous model of time in number of seconds:

simnodel .time = "conti nuous";
simnodel .tinmeUnit = "s";

2.1.1. Time Granularity

A model's time granularity is the time delay until the next moment, such that the model does not allow
considering an earlier next moment. Thisis captured by the simulation parameter nextMomentDeltaT used
by the ssimulator for scheduling immediate events with aminimal delay. When asimulation model is based
on discrete time, nextMomentDeltaT is set to 1, referring to the next time point. When asimulation model is
based on continuous time, nextMomentDeltaT is set to the default value 0.001, unless the model parameter
si m nodel . next Monent Del t aT isexplicitly assigned in the si nmul ati on. j s file.

2.1.2. Time Progression

An important issue in simulation is the question how the simulation time is advanced by the simulator. The
OES paradigm supports next-event time progression and fixed-increment time progression, as well astheir
combination.

An OESjs-Corel model with fixed-increment time progression has to define a suitable periodic time event type,
like EachSecond or EachDay in the form of an exogenous event type with a recurrence function returning the
value 1. Such amodel can be used for

1. modeling continuous state changes (e.g., objects moving in a continuous space), or

2. making a discrete model that abstracts away from explicit events and uses only implicit periodic time
events ("ticks"), which is a popular approach in social science simulation.

Examples of discrete event simulation models with fixed-increment time progression and no explicit events are
the Schelling Segregation Model and the Susceptible-Infected-Recovered (SIR) Disease Model.

Chapter 2. Creating Object Event Simulations with OESjs-Corel 10

https://sim4edu.com/sims/6
https://sim4edu.com/sims/25/index.html

Tutorial: Discrete Event Simulation with OESjs-Corel

2.2. Simulation M odels
2.2.1. Model Variables and Functions

In the smple model of a service desk discussed in the previous section, we define one (global) model variable,
queueLength, one model function, serviceTime(), and two event types, as shown in the following class diagram:

Global Variables and Functions
queuel ength : NonNegativel nteger
«rv» serviceTime() : Integer { Frea{ 2:0.3, 3:0.5, 4:0.2}}

«exogenous event type»
Arrival «caused event type»

Departure

«rv» recurrence() : Integer { U(1-6)}

Notice that this model does not define any object type, which implies that the system state is not composed

of the states of objects, but of the states of model variables, here it consists of the state of the model variable
gueuelL ength. The discrete random variable for modeling the random variation of service durationsis
implemented as amodel function ser vi ceTi me shown in the Global Variables and Functions class. It samples
integers between 2 and 4 from the empirical probability distribution Frequency{ 2:0.3, 3:0.5, 4:0.2}. The model
can be coded with OESjs-Corel in the following way:

/'l (global) nodel variable
si m nodel . v. queuelLengt h = 0;
/1 (global) nodel function
si m nodel . f.serviceTine = function () {
var r = math. get Uni f or mRandom nt eger (0, 99);

if (r <30) return 2; /] probability 0.30
elseif (r <80) return 3; /1 probability 0.50
el se return 4; /1 probability 0.20

b

You can run this Service-Desk-0 model from the project's GitHub website. An example of arun of thismodel is
shown in the following simulation log:

Table 2-1. Smulation Log

Step Time System State Future Events

0 0 queuelength: 0 CustomerArrival @1
) CustomerDeparture@4,

1 1 Quetiel-ength: 1 CustomerArrival @4
) CustomerDeparture@6,

2 4 queuetength: 1 CustomerArrival @7

3 6 queuel ength: O CustomerArrival @7

Chapter 2. Creating Object Event Simulations with OESjs-Corel 11

https://sim4edu.com/oesjs/core0/Service-Desk-0/index.html

Tutorial: Discrete Event Simulation with OESjs-Corel

Step Time System State Future Events

: 7 I oo
5 11 queuelength: 0 CustomerArrival @13

6 13 queuel ength: 1 gzigzzzres\aggegls’
7 15 gueueL ength: O CustomerArrival @19

49 114 gueueL ength: O CustomerArrival @117

. o | GoTANAGLD
51 118 queuelength: 2 gzzgmngﬁxgﬁgm’
: oz | SoTANAGE,
53 121 queveLength: 3 gzzgmngﬁaﬁggf&
g T
. A e
56 125 queueLength: 4 gzzgmgiﬁ\a’z‘gﬁf‘a'
. wmmos | OmmeAnAGE
; oy S
59 129 queuel ength: 4 gzzgmzzf:\?:l%eg; 3L,
g ems ISR
61 133 queuel ength: 4 gzigmngsj;gegi %,
° I e o8
s I ool
64 139 queuelength: 4 gﬂiﬁﬂii?ﬁﬁgﬁﬂ’

Chapter 2. Creating Object Event Simulations with OESjs-Corel 12

Tutorial: Discrete Event Simulation with OESjs-Corel

Step Time System State Future Events
65 141 gueuel ength: 3 gzzgmggg\gfegle
66 142 queueL ength: 4 gﬂiﬁﬂii?ﬁﬁgﬁm
. ” omons | |Sarmre
68 147 queveLength: 4 gzigmngﬁﬁgﬁ?&
o s S
70 149 queveLength: 5 gzigzngﬁjatgl@;lﬁl'

2.2.2. Object Types

Object types are defined in the form of classes. Consider the object type ServiceDesk defined in the following
Service-Desk-1 model:

«object type»
ServiceDesk

gueuel ength : NonNegativel nteger
«rv» serviceTime() : Integer { Freg{ 2:0.3, 3:0.5, 4:0.2}|}

«exogenous event type» *
Arrival

«rv» recurrence() : Integer { U(1-6)}

«caused event type»
Departure

serviceTime : Positivelnteger

While queueLengt h was defined as aglobal variable in the Service-Desk-0 model, it is now defined as an
attribute of the object type ServiceDesk:

cl ass ServiceDesk extends oBJECT {

constructor ({ id, name, queuelLength}) {
super(id, nane);
thi s. queueLengt h = queuelLengt h;

}

static serviceTime() {
var r = math. get Uni f or mRandom nt eger(0, 99);
if (r <30) return 2; /| probability 0.3

Chapter 2. Creating Object Event Simulations with OESjs-Corel 13

Tutorial: Discrete Event Simulation with OESjs-Corel

else if (r <80) return 3; /] probability 0.5
el se return 4; /] probability 0.2
}

}
Servi ceDesk. | abel s = {"queuelLength":"qgLen"}; [/ for the |og

Notice that, in OESjs, object types are defined as subtypes of the pre-defined class 0BJECT, from which they
inherit an integer-valued i d attribute and an optional nane attribute. When aproperty hasal abel (defined by
the class-level (map-valued) property | abel s), it is shown in the ssmulation log.

You can run this simulation model from the project's GitHub website.
2.2.3. Event Types
In OES, there is adistinction between two kinds of events:

1. eventsthat are caused by other event occurrences during a simulation run;

2. exogenous events that seem to happen spontaneously, but may be caused by factors, which are external
to the simulation model.

Here is an example of an exogenous event type definition in OESjs-Corel:

cl ass CustonerArrival extends eVENT {
constructor ({ occTime, serviceDesk}) {
super (occTi ne);
thi s.serviceDesk = servi ceDesk;

}
onEvent () {

The definition of the CustomerArrival event type includes a reference property serviceDesk, which is used for
referencing the service desk object at which a customer arrival event occurs. In OESjs, event types are defined
as subtypes of the pre-defined class e VENT, from which they inherit an attribute occTi me, which holds the
occurrence time of an event. As opposed to objects, events do normally not have an ID, nor a name.

Each event type needs to define an onEvent method that implements the event rule for events of the defined
type. Event rules are discussed below.

Exogenous events occur periodically. They are therefore defined with arecurrence function, which provides

the time in-between two events (often in the form of arandom variable). The recurrence function is defined as a
class-level ("static") method:

cl ass CustonerArrival extends eVENT {

static recurrence() {
return mat h. get Uni f or mRandom nteger(1, 6);

Chapter 2. Creating Object Event Simulations with OESjs-Corel 14

https://sim4edu.com/oesjs/core0/Service-Desk-1/index.html

Tutorial: Discrete Event Simulation with OESjs-Corel

Notice that the recurrence function of CustomerArrival is coded with the library method
mat h. get Uni f or mRandoni nt eger , which alows sampling from discrete uniform probability distribution
functions.

In the case of an exogenous event type definition, a createNextEvent method has to be defined for assigning
event properties and returning the next event of that type, which is scheduled by invoking the recurrence
function for setting its ocurrenceTime and by copying all participant references (such as the serviceDesk
reference).

cl ass CustonerArrival extends eVENT {

creat eNext Event () {
return new CustonerArrival ({
occTine: this.occTime + CustonerArrival.recurrence(),
servi ceDesk: this.serviceDesk
1)
}

static recurrence() {...}

When an OE simulator processes an exogenous event e of type E, it automatically schedules the next event of
type E by invoking the createNextEvent method on €, if it is defined, or, otherwise by duplicating e and resetting
its occurrence time by invoking E.recurrence().

For an exogenous event type, it is an option to define a maximum number of event occurrences by setting the
static attribute maxNnr Of Event s, asin the following example:

Cust ormer Arri val . maxNnr Of Events = 3;
The second event type of the Service-Desk-1 model, Departure, is an example of atype of caused events:

cl ass CustonerDeparture extends eVENT {
constructor ({ occTinme, serviceDesk}) {
super (occTine);
this.serviceDesk = servi ceDesk;

}
onEvent () {

A caused event type does neither define a recurrence function nor a createNextEvent method.
2.2.4. Event Rules

An event rule for an event type defines what happens when an event of that type occurs, by specifying the
caused state changes and follow-up events. In OESjs, event rules are coded as onEvent methods of the class

Chapter 2. Creating Object Event Simulations with OESjs-Corel 15

Tutorial: Discrete Event Simulation with OESjs-Corel

that implements the event type. These methods return a set of events (more precisely, a set of JS objects

representing events).
Notice that in the DES literature, event rule methods are called event routines.

For instance, inthe Cust oner Arri val class, the following event rule method is defined:

class CustonerArrival extends eVENT {

onEvent () {
var foll owpEvents=[];
/'l increnent queue |length due to newy arrived custoner
t hi s. servi ceDesk. queuelLengt h++;
/| update statistics
simstat.arrivedCust oners++
if (this.serviceDesk.queueLength > sim stat.mxQueueLength) {
sim stat. maxQueueLength = this. servi ceDesk. queueLengt h;

}
/1 if the service desk is not busy
if (this.serviceDesk.queueLength === 1) {
fol |l owupEvents. push(new Cust omer Depart ure({
occTinme: this.occTime + ServiceDesk. serviceTine(),
servi ceDesk: this.serviceDesk
1)
}
return foll owupEvents

The context of this event rule method is the event that triggers the rule, that is, the variablet hi s

references a JS object that represents the triggering event. Thus, the expressiont hi s. ser vi ceDesk

refers to the service desk object associated with the current customer arrival event, and the statement

t hi s. servi ceDesk. queueLengt h++ increments the queuelLength attribute of this service desk object (as an

immediate state change).

The following event rule method is defined in the Cust oner Depar t ur e class.

cl ass CustonerDeparture extends eVENT {

onEvent () {
var foll owupEvents=[];
/'l decrenent queue |length due to departure
thi s. servi ceDesk. queuelLengt h--;
/| update statistics
si m st at. depart edCust oner s++;
/1 if there are still customers waiting
if (this.serviceDesk.queueLength > 0) {
/1l start next service and schedule its end/ departure
fol | owupEvents. push(new Cust omer Depart ure({
occTinme: this.occTime + ServiceDesk. serviceTine(),
servi ceDesk: this.serviceDesk

Chapter 2. Creating Object Event Simulations with OESjs-Corel

16

Tutorial: Discrete Event Simulation with OESjs-Corel

1)
}
return foll owupEvents;
}
}

2.2.5. Event Priorities

An OES model may imply the possibility of several events occurring at the same time. Consequently, a
simulator (like OESjs) must be able to process simultaneous events. In particular, simulation models based on
discrete time may create simulation states where two or more events occur at the same time, but the model's
logic requires them to be processed in a certain order. Defining priorities for events of a certain type helpsto
control the processing order of simultaneous events.

Consider an example model based on discrete time with three exogenous event types StartOfMonth, EachDay
and EndOfMonth, where the recurrence of StartOfMonth and EndOfMonth is 21, and the recurrence of EachDay
is 1. In this example we want to control that on simulation time 1 + i * 21 both a StartOfMonth and an EachDay
event occur simultaneously, but StartOfMonth should be processed before EachDay, and on simulation time

21 +i * 21 both an EndOfMonth and an EachDay event occur simultaneously, but EndOfMonth should be
processed after EachDay. This can be achieved by defining a high priority, say 2, to StartOfMonth, amiddle
priority, say 1, to StartOfMonth, and alow priority, say O, to EndOfMonth.

Event priorities are defined as class-level properties of event classesin the event type definition file. Thus, we
would definein St art Of Mont h. j s:

StartOf Month. priority = 2;
andinEachDay. j s:

EachDay. priority = 1;

and finally in EndCf Mont h. j s:
EndOf Mont h. priority = 0;

2.2.6. Library Methods for Sampling Probability Distribution Functions
Random variables are implemented as methods that sample specific probability distribution functions (PDFs).
Simulation frameworks typically provide alibrary of predefined parametrized PDF sampling methods, which

can be used with one or several (possibly seeded) streams of pseudo-random numbers.

The OESjs simulator provides the following predefined parametrized PDF sampling methods:

Probability

Distribution Function OESjsLibrary Method Example

uni f or m(lowerBound,

Uniform upper Bound)

rand. uniforn(0.5, 1.5)

Chapter 2. Creating Object Event Simulations with OESjs-Corel 17

https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

Tutorial: Discrete Event Simulation with OESjs-Corel

Probability N
Distribution Function OESsLibrary Method Example
. . i f | B
Discrete Uniform uni for m nt (lowerBound, rand. uniformnt(1, 6)
upper Bound)
Trianaular tri angul ar (lowerBound, rand. triangul ar(0.5,
g upper Bound, mode) 1.5, 1.0)
f "2":0.4
Freguency f r equency (frequencyMap) rand. frequency({ 0.4,
"3":0.6})
Exponential exponent i al (eventRate) rand. exponenti al (0.5)
Gamma gamma(shape, scale) rand. ganma(1.0, 2.0)
Normal nor mal (mean, stdDev) rand. normal (1.5, 0.5)
Pareto par et o(shape) rand. pareto(2.0)
Weibull wei bul | (scale, shape) rand. wei bull (1, 0.5)

The OESjslibrary r and. j s supports both unseeded and seeded random number streams. By default, its PDF

sampling methods are based on an unseeded stream, using Marsaglia’ s high-performance random number
generator xorshift that is built into the Mat h. r andomfunction of modern JavaScript engines.

A seeded random number stream, based on David Bau's seedable random number generator seedrandom, can be
obtained by setting the scenario parameter si m scenari o. r andonSeed to a positive integer value.

Additional streams can be defined and used in the following way:

var streanml = new Randonm(1234);
var strean? = new Randon{ 6789);
var servicelDuration = streanl. exponential (0.5);
var service2Duration = strean®. exponential (1.5);

WARNING

Avoid using JavaScript's built-in Mat h. r andomin simulation code. Always use
rand. uni f or m or one of the other sampling functions fromther and. j s library
described above, for generating random numbers.

Otherwise, using arandom seed does not guarantee reproducible simulation runs!

2.3. Simulation Scenarios

For obtaining a complete executable simulation scenario, a simulation model has to be complemented with
simulation parameter settings and an initial system state.

Chapter 2. Creating Object Event Simulations with OESjs-Corel

18

https://en.wikipedia.org/wiki/Discrete_uniform_distribution
https://en.wikipedia.org/wiki/Triangular_distribution
https://en.wikipedia.org/wiki/Triangular_distribution
http://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Pareto_distribution
https://en.wikipedia.org/wiki/Weibull_distribution
https://en.wikipedia.org/wiki/Xorshift
https://github.com/davidbau/seedrandom

Tutorial: Discrete Event Simulation with OESjs-Corel

In general, we may have more than one simulation scenario for a simulation model. For instance, the same
model could be used in two different scenarios with different initial states.

An OESjs simulation scenario consists of

1. asimulation model;
2. simulation parameter settings, such as setting avalue for dur at i onl nSi nili me and r andonfeed; and

3. aninitial state definition.

An empty template for the si mul ati on. j s file has the following structure:

// * Kk k k% SI rrul atlon Nbdel kkhkkkhkkkhkhkkkhkkkhhkkkhkkkhkk*k

simnodel .time ="..."; [/ discrete or continuous

si m nodel . timelncrement = ...; /] optiona

simnodel .timeUnit ="..."; [/ optional (ns|s|mnn|hour|day|week|nonth|year)
si m nodel . v. aMbdel Variable = ...; [/ (devel oper-defined) nodel variables

si m nodel . f. aMbdel Function = ...; [/ (devel oper-defined) nodel functions

si m nodel . p. aMbdel Parameter = ...; [/ (devel oper-defined) nodel paraneters
si m nodel . obj ect Types = [...]; [/ (devel oper-defined) object types

si m nodel . event Types = [...]; [/ (devel oper-defined) event types

[***** Sipul ati on Paranmeters ***x*x*xx&xsxx
simscenario.durationlnSimline = ...;
sim scenari o.randonSeed = ...; /1 optiona

// *kk k% |n|t|a| State kkhkkkhkkhkhkkkhkkhhkkikkhkkkikkhkkhk*k

sim scenario.setuplnitial State = function () {
/1 Initialize nodel variables

/!l Create initial objects

// Schedule initial events

}s

// *kk k% EX_POSt Statlstlcs kkkkkkkkkkkhkhkkk k%
simnodel . statistics = {...};

We briefly discuss each group of scenario information items in the following sub-sections.

2.3.1. Model Parameters

While model variables are state variables whose values are changed as an effect of an event occurrence, model
parameters are not part of the dynamic state of the smulated system, but are rather used for providing values
that can only be read during a simulation run. The main purpose of model parametersisto alow parameter
variation experiments.

2.3.2. Simulation Scenario Parameters

A few simulation parameters are predefined as attributes of the simulation scenario. The most important ones
are:

Chapter 2. Creating Object Event Simulations with OESjs-Corel 19

Tutorial: Discrete Event Simulation with OESjs-Corel

* durationinSmTime - this attribute allows defining the duration of a simulation run; which runs forever
when this attribute s not set;

» randomSeed: Setting this optional parameter to a positive integer allows to obtain a specific fixed random
number sequence (generated by arandom number generator). This can be used for performing simulation
runs with the same (repeated) random number sequence, e.g., for testing a simulation model by checking if
expected results are obtained.

2.3.3. Initial State
Defining an initial state means:

1. assigning initial values to global model variables, if there are any;
2. defining which objects exist initially, and assigning initial values to their properties;

3. defining which events are scheduled initially.

A set upl ni ti al St at e procedure takes care of these initial state definitions. A global model variableis
initialized in the following way:

sim scenario.setuplnitial State = function () {
/1 Initialize nodel variables
si m nodel . v. queueLength = 0;
/! Create initial objects

/!l Schedule initial events
}s

Aninitial state object is created by instantiating an object type of the simulation model with suitable initial
property values, as shown in the following example:

simscenario.setuplnitial State = function () {
/1 Initialize nmodel variables

/!l Create initial objects

const serviceDeskl = new ServiceDesk({id: 1, queuelLength: 0});
/'l Schedule initial events

Notice that object I1Ds are positive integers.

Instead of assigning afixed valueto a property like queueLengt h for defining an object'sinitial state, asin
queuelLengt h: 0, we can also assign it an expression, asin queuelLengt h: Mat h. round(12/ 30) .

Aninitial event is scheduled (or added to the Future Events List), as shown in the following example:

simscenario.setuplnitial State = function () {
/1 Initialize nodel variables

Chapter 2. Creating Object Event Simulations with OESjs-Corel 20

Tutorial: Discrete Event Simulation with OESjs-Corel

/] Create initial objects

const deskl = new ServiceDesk({id: 1, queuelLength: 0});

/] Schedule initial events

si m schedul e(new CustomnerArrival ({occTime:1, serviceDesk: deskl}));

}i
Initial objects or events can be parametrized with the help of model parameters.

2.3.4. Defining Alter native Scenarios with Different Initial States

For running amodel on top of different initial states, one can define alist of scenarios, each with itsown
setupl nitial State procedure:

simscenarios[1l] = {

scenari oNo: 1,

title: "Scenario with two service desks",

setuplnitial State: function () {
/1l Create initial objects
var sD1 = new ServiceDesk({id: 1, queuelLength: 0}),

sD2 new Servi ceDesk({id: 2, queueLength: 0});

/] Schedule initial events
si m FEL. add(new CustonerArrival ({occTinme: 1, serviceDesk: sD1}));
si m FEL. add(new CustonerArrival ({occTime: 2, serviceDesk: sD2}));

}s

simscenarios[2] ={...}

Before running a simulation, a specific scenario can be chosen in the user interface.

WARNING

Do not set model parametersinthe set upl ni ti al St at e procedure! Thiswould
interfere with parameter variation experiments in which the same parameter(s) are
used.

2.4. Statistics

In scientific and engineering simulation projects the main goal is getting estimates of the values of certain
variables or performance indicators with the help of statistical methods. In educational simulations, statistics can
be used for observing simulation runs and for learning the dynamics of a simulation model.

For collecting statistics, suitable statistics variables have to be defined, as in the following example:

si m nodel . setupStatistics = function () {
simstat.arrivedCustoners = O;
si m stat. depart edCustoners = 0;

Chapter 2. Creating Object Event Simulations with OESjs-Corel 21

Tutorial: Discrete Event Simulation with OESjs-Corel

si m stat. maxQueueLength = 0;

b

Statistics variables have to be updated in onEvent methods. For instance, the variables arrivedCustomers and
maxQueuelength are updated in the onEvent method of the CustomerArrival event class:

class CustonerArrival extends eVENT {
onEvent () {

/'l update statistics

simstat.arrivedCust onmer s++;

if (this.serviceDesk.queueLength > sim stat.mxQueuelLength) ({
sim stat. maxQueueLength = this. servi ceDesk. queuelLengt h;

In certain cases, a statistics variable can only be computed at the end of a simulation run. For this purpose, there
is the option to define a computeFinal Statistics procedure:

si m nodel . conput eFi nal Statistics = function () {
/'l percentage of business days w thout stock-outs
simstat.serviceLevel = (simtinme - simstat.nnrOf StockQuts) / simtinme * 100;

I
After running a simulation scenario, the statistics results are shown in atable:

Table 2-2. Satistics

arrivedCustomers 289
departedCustomers 288
maxQueuel ength 4
2.5. Time Series

It is often desirable to observe the changes of avariable's value over time by looking at atemporal sequence of
the values of avariable called atime series. Typically, atime seriesis plotted in a chart.

In OESjs, you can create atime series chart for a statistics variable or for an attribute of a specific object by
assigning a corresponding definitionto si m nodel . ti meSeri es insi nul ation.j s like so:

1|simumodel.tinmeSeries = {

2 "order quantity": {statisticsVariable: "orderQuantity"},
3 "liquidity": {objectld:1, attribute:"liquidity"}

4},

Chapter 2. Creating Object Event Simulations with OESjs-Corel 22

Tutorial: Discrete Event Simulation with OESjs-Corel

2.6. Simulation Experiments

There are different types of simulation experiments. In a simple experiment, a simulation scenario is run
repeatedly by defining a number of replications (iterations) for being able to compute average statistics.

In a parameter variation experiment, several variants of a simulation scenario (called experiment scenarios), are
defined by defining value sets for certain model parameters (the experiment parameters), such that a parameter
variation experiment run consists of a set of experiment scenario runs, one for each combination of parameter
values.

An experiment type is defined for a given simulation model and an experiment of that type isrun on top of a
given simulation scenario for that model.

When running an experiment, the resulting statistics data are stored in a database, which allows looking them up
later on or exporting them to data analysis tools (such as Microsoft Excel and RStudio)

Simple Experiments

A simple experiment type is defined with asi m exper i ment Type record on top of amodel by defining (1)
the number of replications and (2) possibly alist of seed values, one for each replication. The following code
shows an example of a simple experiment type definition:

si m experi nent Type = {
title: "Sinple Experinent with 10 replications, each running for 1000 tine units (days)",
nnr Of Repl i cati ons: 10,
seeds: [123, 234, 345, 456, 567, 678, 789, 890, 901, 1012]

b

a b~ W N B

Running this simple experiment means running the underlying scenario 10 times, each time with another
random seed, as specified by the list of seeds. The resulting statistics are composed of the statistics for each
replication complemented with summary statistics listing averages, standard deviations, min/max values and
95% confidence intervals, as shown in the following example:

Experiment Results
Statistics
Replication
arrivedCustomers departedCustomers maxQueuel ength
1 285 283 7
2 274 274 6
3 285 285 4
4 287 286 5
5 284 284 6
6 300 299 4
7 288 286 5
8 286 284 4
9 286 285 4

Chapter 2. Creating Object Event Simulations with OESjs-Corel 23

Tutorial: Discrete Event Simulation with OESjs-Corel

Experiment Results
Statistics
Replication
arrivedCustomers departedCustomers maxQueuel ength

10 295 293 6
Average 287 2859 51
Std.dev. 6.848 6.506 1101
Minimum 274 274 4
Maximum 300 299 7

Cl Lower 282.9 2819 44
Cl Upper 291 289.6 5.7

When no seeds are defined, the experiment is run with implicit random seeds using JavaScript's built-in random
number generator, which implies that experiment runs are not reproducible.

Parameter Variation Experiments

A parameter variation experiment is defined with (1) a number of replications, (2) alist of seed values (one for
each replication), and (3) one or more experiment parameters.

An experiment parameter must have the same name as the model parameter to which it refers. It defines a set of
values for this model parameter, either using aval ues field or acombination of ast ar t Val ue and endVal ue
field (and st epSi ze for anon-default increment value) asin the following example.

The following code shows an example of a parameter variation experiment definition (on top of the Inventory-
Management simulation model):

1 |simexperinent Types[1] = {

2 id: 1,

3 title: "Paraneter variation experinment for exploring reorderlnterval and targetlnventory'

4 nnt O Repl i cati ons: 10,

5 seeds: [123, 234, 345, 456, 567, 678, 789, 890, 901, 1012],

6 par anet er Defs: [

7 {nane: "revi ewPol i cy", values:["periodic"]},

8 {nane: "reorderlnterval", values:[2,3,4]},

9 {nane: "targetlnventory", startVal ue: 80, endVal ue: 100, stepSi ze: 10},
10]
ISR

Notice that this experiment definition defines 9 experiment scenarios resulting from the combinations of the
values 2/3/4 and 80/90/100 for the parameters reorderInterval and targetlnventory. Running this parameter
variation experiment means running each of the 9 experiment scenarios 10 times (each time with another
random seed, as specified by the list of seeds). The resulting statistics, as shown in the following table, is
computed by averaging all statistics variables defined for the given model.

Chapter 2. Creating Object Event Simulations with OESjs-Corel 24

https://sim4edu.com/oesjs/core1/Inventory-Management/index.html
https://sim4edu.com/oesjs/core1/Inventory-Management/index.html

Tutorial: Discrete Event Simulation with OESjs-Corel

Experiment Results
Experiment Parameter values Statisties
SEENEID nmr OfStockOuts lostSales servicel evel
0 periodic,2,80 21.8 180.7 97.82
1 periodic,2,90 74 55.9 99.26
2 periodic,2,100 21 15.8 99.79
3 periodic,3,80 86.6 855.6 91.34
4 periodic,3,90 40.6 3775 95.94
5 periodic,3,100 16.3 139.8 98.37
6 periodic,4,80 1715 2067.5 82.85
7 periodic,4,90 110.6 1238.3 88.94
8 periodic,4,100 63.8 661.4 93.62

Storage and Export of Experiment Results

In OESjs-Corel, an experiment's output statistics datais stored in a browser-managed database using
JavaScript's IndexedDB technology. The name of this database is the same as the name of the simulation model.
It can be inspected with the help of the browser's developer tools, which are typically activated with the key
combination [Shift]+[Ctrl]+[1]. For instance, in Google's Chrome browser, one has to go to Application/Storage/
IndexedDB.

The experiment statistics database consists of three tables containing data about (1) experiment runs, (2)
experiment scenarios, and (3) experiment scenario runs, which can be exported to aCSV file.

2.7. Using the Simulation L og

The OESjs-Corel simulator can generate a simulation log, which allows to inspect the evolving states of a
simulation run. Inspecting the simulation log can help to understand the dynamics of amodel, or it can be used
for finding logical flawsiniit.

The contents of the simulation log can be controlled by defining labels for those object properties that are to

be displayed in the log. For instance, in the case of the Service-Desk-1 model, alabel "gLen" is defined for the
queuelLengt h property of ServiceDesk objects by setting

Servi ceDesk. | abel s = {"queuelLength":"qgLen"};

Thisresultsin the following simulation log:

Step Time System State Future Events
0 0 ifwlce-Desk-l{ aen: | o stomerArrival @1
1 1 Service-Desk-1{ gLen: CustomerDeparture@5,

1} CustomerArrival @6

Chapter 2. Creating Object Event Simulations with OESjs-Corel 25

https://sim4edu.com/oesjs/core1/Service-Desk-1/index.html

Tutorial: Discrete Event Simulation with OESjs-Corel

Step Time System State Future Events
2 5 cS)}erwceD@k—l{ aken: | o tomerArrival @6
3 6 Service-Desk-1{ gLen: CustomerArrival @7,
1} CustomerDeparture@10
4 7 Service-Desk-1{ gLen: CustomerDeparture@10,
2} CustomerArrival @10
5 10 Service-Desk-1{ gLen: CustomerArrival @12,
2} CustomerDeparture@13
6 12 Service-Desk-1{ gLen: CustomerDeparture@13,
3} CustomerArrival @16
7 13 Service-Desk-1{ gLen: CustomerArrival @16,
2} CustomerDeparture@16
8 16 Service-Desk-1{ gLen: CustomerDeparture@19,
2} CustomerArrival @21
9 19 Service-Desk-1{ gLen: CustomerArrival @21,
1} CustomerDeparture@23

2.8. Observation and User Interaction

Being able to observe a simulation run with the help of visualization (and sonification) isimportant for
educational simulations and games, but it can also be used as a general tool for testing, inspecting and validating
simulations. Both objects and events by can be visualized, while events can aso be sonified. A simulation can
be turned into an even more immersive experience by allowing human users to interact with the simulated
world.

OESjs allows adding the following user interfaces (Ul) to a simulation model:

1. Anobservation Ul defines various kinds of visualizations (including 3D) for alowing the user to
observe what is going on during a simulation run. Space models, objects and events can be visualized
by defining views for them. An object view is defined by a 2D shape (like acircle or a polygon) or a
3D shape (like a sphere or amesh). An event view consists of a Web Animation of one or more DOM
elements using key frames. Events can also be sonified by attaching specific sounds to event occurrences
in an event appearance definition.

2. A user interaction Ul alows human users to interact with arunning simulation by taking decisions on
the values of decision variables or by taking actions that change the value of certain simulation variables.

3. A participation Ul allows human users to participate in a multi-agent simulation scenario by taking
over an agent for receiving situational information and performing in-world actions via the user
interface. Any multi-agent simulation model can be turned into a user-interactive participatory
simulation by adding a participation model and a corresponding UI.

How to define an observation Ul or auser interaction Ul is described in the next chapter.

Chapter 2. Creating Object Event Simulations with OESjs-Corel 26

Tutorial: Discrete Event Simulation with OESjs-Corel

Chapter 3. Simulation Programming with OESs

Using asimulation framework like OESjs means that only the model-specific logic has to be coded (in the form
of object types, event types, event routines and other functions for model-specific computations), but not the
genera simulator operations (e.g., time progression and statistics) and the environment handling (e.g., user
interfaces for statistics output and visualization).

The following sections present important simulation programming issues.

3.1. Accessing Objects

The objects defined in theinitial state, or created during a simulation run, can be accessed either by their ID
number or by their name, if they have one. For instance, the object with { id: 1, name:"serviceDesk1", ...} has

the ID number 1 and the name "serviceDesk1". It can be retrieved by 1D from the collection si m obj ect s (a
JS Map) in the following way:

var objectl = simobjects.get(1);

It can also be retrieved by name from the collection si m nanmedQbj ect s (also aJS Map) in the following way:
var objectl = simnanedObj ects. get("serviceDeskl");

For looping over all simulation objects, we can loop over the collection si m obj ect s in the following way:

for (const obj of simobjects.values()) {
/1 do sonething with obj

We can loop over all simulation objects of a specific type, say Ser vi ceDesk, in the following way:

for (const objldStr of Cbject.keys(simd asses["ServiceDesk"].instances)) {
const obj = sim Cl asses["Servi ceDesk"].instances[objldStr];
/1 do sonething with obj

Here, si m O asses provides amap from class names to classes, which are special JS objects, such that for a
class C, the collection C. i nst ances (aJS map/object) provides a map from object IDsto JS objects. Thus, the
expression Obj ect . keys(sim O asses[" Servi ceDesk"].instances) representsan array/list of object
ID strings, namely the keys of the map si m Cl asses[" Ser vi ceDesk"] . i nst ances.

3.2. Defining and Using a History Attribute

There are use cases which require to construct a history of the changing values of a certain attribute for a
specific object and evaluate or simply display this history. For example, we may define a history attribute

t enper at ur eHi st ory in addition to the attribute t enper at ur e for recording the history of average daily
temperatures:

cl ass LenobnadeMar ket extends Dail yDemandMar ket {
constructor ({id, name, tenperature}) {

Chapter 3. Simulation Programming with OESjs 27

Tutorial: Discrete Event Simulation with OESjs-Corel

super ({id, nane});

this.tenperature = tenperature;
this.tenperatureHi story = new Ri ngBuffer();
this.tenperatureHi story.add(tenperature);

The value of such a history attribute is aring buffer, having alimited size and an add operation for adding new
itemsto the buffer asin the last constructor statement above.

Notice that the oldest item of such a buffer may get lost when the buffer is already full and a new item is added.

The value of ahistory attribute can be converted to a string with the help of the expression

si m nanedObj ect s["| enonadeMar ket "] . t enperat ureHi story.toString()

Chapter 3. Simulation Programming with OESjs 28

Tutorial: Discrete Event Simulation with OESjs-Corel

Chapter 4. Defining User Interfaces

The OESjs simulation framework alows defining user interfaces for various purposes on top of asimulation
model:

1. A model parameter Ul allows the user to modify the values of parameters without changing the
simulation code.

2. Aninitial state Ul alows modifying the attribute values of initial objects and events.

3. Anobservation Ul allows defining views for objects and events (and sounds for events) such that they
can be visualized (and sonified) during a simulation run.

4. A user interaction Ul allows defining user interactions bound to certain events, such that a smulation
can be turned into a game.

4.1. Defining an Observation User Interface

An observation Ul allows defining views for objects and events (and sounds for events) such that they can be
visualized (and sonified) during asimulation run. Since OESjsis aframework for web-based simulation, an
observation Ul is based on the following Web technologies: CSS, SVG and Web Animations. For learning more
about SV G shapes and their attributes, see the book chapter Basic Shapes & Paths by Joni Trythall. For learning
more about CSS styling of SV G elements, see Styling And Animating SV Gs With CSS by Sara Soueidan.

Visualizing Objects

For being able to observe objectsin a simulation run, they have to be visualized in some form. OESjs supports
both the visualization of objectsin spacein spatial models and of objectsin non-spatial models.

In avisualization of a non-spatial model, such as the ServiceDesk-1 model, all object views have to be explicitly
positioned in an observation canvas.

In the case of our ServiceDesk-1 model, we may, for instance, visualize the service desk using either an image
or simply afixed-size rectangle, and its queue in the form of a growing and shrinking bar.

Two-dimensional visualizations can be obtained by using the web technology of Scalable Vector Graphics
(SVG) in the definition of the observation Ul. For defining an observation Ul with SV G-based visualization, the
following settings have to be made:

1|simconfig.obs.ui.type = "SVG';
2 |simconfig.obs.ui.canvas.w dth = 600;
3 |simconfig.obs. ui.canvas. hei ght = 300;

In addition, one can define a CSS style for the canvas element in the following way, e.g., for setting a
background color or background image:

1|simconfig.obs.ui.canvas.style = "background-col or: azure";

Then we can define fixed elements of avisualization, giving each one a name (here: "desk™) and defining an
SV G shape with attributes and a CSS style:

Chapter 4. Defining User Interfaces 29

https://developer.mozilla.org/en-US/docs/Web/API/Web_Animations_API/Using_the_Web_Animations_API
http://svgpocketguide.com/book/#section-2
http://www.smashingmagazine.com/2014/11/styling-and-animating-svgs-with-css/

Tutorial: Discrete Event Simulation with OESjs-Corel

simconfig.obs.ui.fixedEl enents = {
"desk": {
shapeNane: "rect",
shapeAttri butes: { x: 350, y: 200, wi dth: 50, height: 30},
style: "fill:brown; stroke-w dth: 0"

~N o oA WN B

Themainissuein visualization is to visualize simulation objects by defining suitable views for them and then
map some of their attributes to suitable visua parameters such as color, shape width and height, etc. A view can
be defined either for all instances of an object type or for specific instances only.

For instance, we may want to visualize the waiting line of the object "serviceDesk1" in the form of arectangle
and map the service desk's queuel ength attribute to the width of that rectangle, asin the following object view
definition:

1|simconfig.obs.ui.objectViews = {

2 "serviceDesk1": { [// the nane of the object

3 visualizati onAttributes: ["queueLength"],

4 attributesView tensRecords: |

5 { attributes:["queueLength"],

6 viemtens: [// alist of 2 view elenents for the object "serviceDeskl"
7 {shapeNane: "rect", [/ a rectangle

8 shapeAttributes: { // left-upper corner (x,y) as well as w dth and hei ght
9 x: sd => Math. max(0, 330 - sd.queuelLength * 20),

10 wi dt h: sd => Math. nm n(300, sd.queueLength * 20),

11 y: 150, height: 80 },

12 style:"fill:yellow stroke-w dth:0"},

13 {shapeNane: "text",

14 shapeAttributes: {x: 325, y: 250, textContent: sd => sd.queuelLength},
15 style: "font-size: 14px; text-anchor:m ddle"}

16]

17| }

18|},

Notice that the view consists of two elements. arectangle and an attached text displaying the queue length.
In the view definition, certain attributes are assigned a fixed value, while others are assigned a JS function
expression, which codes the mapping of object attributes to visual parameters.

Alternatively, instead of defining aview for a specific service desk object, we can also define aview for al
service desk objects, like so

1|simconfig.obs.ui.objectView = {

2 "ServiceDesk": [// the nane of the object type/class

3 { shapeNane: "rect", // a rectangle defined by

4 shapeAttributes: { // left-upper corner (x,y) as well as w dth and hei ght
5 x: function (sd) {return Math.max(0, 330 - sd.queueLength * 20);},

6 wi dt h: function (sd) {return Math.m n(300, sd.queueLength * 20);},

7 y: 150, height: 80

8 ¥

9 style:"fill:yellow, stroke-w dth:Q"

Chapter 4. Defining User Interfaces 30

Tutorial: Discrete Event Simulation with OESjs-Corel

10 }
R

Visualizing Events

4.2. Defining a User Interfacefor User Interactions

In an event-based simulation, implicit actions bound to events of a certain type can be replaced by user actions,
such that when an event of that type occurs, the simulation halts and the user gets the opportunity to perform
an action (or take a decision) that determines how the simulation is continued. This type of interaction requires
asuitable user interface that allows the user to enter values for action/decision parameters or select one of a
number of possible actions.

A user interaction user interface (Ul) alows defining user actions bound to events of a certain type. Such a Ul
turns a simulation into agame, or a human-in-the-loop simulation.

For instance, in the simulation of alemonade stand (as an example of a manufacturing company), there could be
an event type SartOfDay representing the start of a business day at which replenishment decisions have to be
made. While these decisions would be made algorithmically in anormal simulation, auser interaction Ul would
allow a human user to make these decisions in a user-interactive (human-in-the-loop) simulation.

A user interaction (UIA) istriggered by a simulation event (of some type, possibly satisfying some condition)
leading to the creation of a modal UIA window and an interruption of the simulation loop by having the browser
wait for user input/actions. The UIA window contains the following Ul elements:

1. output fields for informing the user about the current values of critical state variables,
2. input fields allowing the user to enter values for decision variables, and

3. one or more buttons (typically, a"continue" button allows confirming the choices made).

When the user confirms their choice(s) by activating the "continue” button, this triggers an event handler that
restarts the smulator.

Chapter 4. Defining User Interfaces 31

Tutorial: Discrete Event Simulation with OESjs-Corel

Appendix A. Simulator Architecture

OES Core 1 adds the following features to OES Core O:
» fixed-increment time progression
* aseedable random number generator

* aset of sampling functions from various probability distributions (uniform, triangular, normal, exponential,
etc.)

 multiple scenarios per model

» multiple experiment types per model
* model parameters

 parameter variation experiments

* persistent storage and export of experiment results

The OES Core 1 simulator's information architecture is described by the following class diagram, which defines
the names of classes, properties and methods/functions:

1 1
1
Simulator * scenarios - Modé
o B ee— time[1] : Enum [DISCR, CONT]
tir?]peg[f] | N:r%ber timeUnit[0..1] : Enum [ms, s, ...]
object s[i] - Map<id, Object> Scenario timel ncrement[O..l]_: Number
FEL[1] : EventList scenarioNo[0..1] : Integer :‘/[[(()) "11]] _:'\I\//llap ////f\; ?]r(':t‘r’:t:]lri
stat[1] : Map title[0..1] ; string o M""p I .
initializeSimulator() durationInSimTime[0..1] : Number pLect]T ap* _p;tf?m s
assignM odel Parameters(in expParSlots : Map) durationInSimSteps[0..1] : Number 00) T ypw&]'.St nng
P ; . ; . 10.1 |durationinCpuSec[0..1] : Number eventTypes[*] : String
initScenRun(in seeds : Integer, in expParSlots : Map) p —
advanceSimul ationTime() randomSeed[0..1] : Integer setupSatistics()
runScenario() setuplnitial State() computeFinal Statistics()
runStandal oneScenario() 1
runSimpl eExperiment() 1 * /model 1 Jmode 1
runParV arExperiment()) b
* experimentTypes
1
0.1 ExperimentType
title]0..1] : String * ExperimentPar amDef
nmrOfReplicationg 1] : Integer -
exper.Type seedq*] : Integer name[1] : String
TameterDefs values[1..*] : Number
rand 1 ? P startValue[0..1] : Number
1 endValue[0..1] : Number
* * stepSize[0..1] : Number

uniform(in Ib : Number, in ub : Number)
uniformint(inIb : Integer, in ub : Integer)
normal(in m : Number, in s: Number)
.0 id : Integer
dateTime: DateTime
baseScenario : Integer 1 *

getAutold() : Integer

ExperimentRun ExperimentScenarioRun

id : Integer

experimentScenarioNo : Integer
parameterV alueCombination : Number
outputStatistics : Map

getAutold() : Integer

Appendix A. Simulator Architecture 32

Tutorial: Discrete Event Simulation with OESjs-Corel

Index

C

continuous dynamic system, 1
D

discrete dynamic system, 1
discrete event system, 1
dynamic system, 1

E

event routine, 16

event rule, 15

exogenous event, 3

O

occurrence time, 14

P

probability distribution function, 17
R

random number stream, 18
random variable, 3, 17
recurrence, 3, 14

S

simultaneous events, 17

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction to Object Event Modeling
	1.1. Making a Conceptual Model of the System under Investigation
	1.2. Making a Simulation Design Model

	2. Creating Object Event Simulations with OESjs-Core1
	2.1. Simulation Time
	2.2. Simulation Models
	2.3. Simulation Scenarios
	2.4. Statistics
	2.5. Time Series
	2.6. Simulation Experiments
	2.7. Using the Simulation Log
	2.8. Observation and User Interaction

	3. Simulation Programming with OESjs
	3.1. Accessing Objects
	3.2. Defining and Using a History Attribute

	4. Defining User Interfaces
	4.1. Defining an Observation User Interface
	4.2. Defining a User Interface for User Interactions

	A. Simulator Architecture
	Index

